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Introduction/Background17

Pseudomonotone maps were introduced by Karamar-18

dian as a generalization of monotone maps [22]. Other19

generalizations include various kinds of pseudomono-20

tone maps (quasimonotone, strictly quasimonotone,21

semistrictly quasimonotone . . . ). These generalizations,22

the relations between them, as well as the relation to23

generalized convexity are discussed in other articles of24

the Encyclopedia (see � Generalized monotone single25

valued maps and � Generalized monotone multivalued26

maps and in [16].27

It should be noted that the same term a “pseudomono-28

tone map” has been introduced by Brezis to denote29

a totally different class of maps [4]. The main differ-30

ence between the two classes is that pseudomonotone31

maps in the sense of Brézis are defined through a kind32

of continuity property, whereas Karamardian used only33

the order relation of real numbers in his definition. For34

this reason some authors, starting by Gwinner [12],35

use the term “topologically pseudomonotone” for pseu-36

domonotone maps in the Brézis sense. Although it is37

possible to give a definition that includes both kinds of38

pseudomonotonicity [11], we will use the term “pseu-39

domonotone” only in the sense defined by Karamar-40

dian.41

Pseudomonotone maps have the advantage that they 42

lead to generalizations of existence theorems for the 43

Stampachia variational inequality problem (VIP), with- 44

out imposing additional assumptions, and with practi- 45

cally the same proof as for monotone maps [16]. How- 46

ever, this quasi-identical treatement of the VIP is not 47

extended to other topics, and the properties of the two 48

classes of maps are often quite dissimilar. For instance, 49

while the sum of two monotone maps is monotone, this 50

is false for pseudomonotone maps. A vast theory has 51

been developed for monotone maps, based on the con- 52

cept of maximal monotonicity. By contrast, until recent- 53

ly it was believed that maximality plays no rôle for 54

pseudomonotone maps. Consequently, some algorithms 55

for finding the solution of VIP with maximal monotone 56

maps have no extension to the pseudomonotone case. 57

This article will present some recent developments that 58

can be considered as a first step towards filling the lacu- 59

nae in the theory of pseudomonotone maps. In partic- 60

ular, maximal pseudomonotonicity will be discussed. 61

The main tool is the definition of an equivalence rela- 62

tion in the set of all pseudomonotone maps. Also, a gen- 63

eralization of paramonotone maps and their use in cut- 64

ting plane algorithms will be described. Finally, recent 65

results on pseudoaffine maps and on the relation to 66

monotone maps will be presented. 67

Definitions 68

Let X be a real Banach space and X� be its dual. Given 69

x; y 2 X , [x; y] denotes the line segment f(1 � t)x + 70

ty : t 2 [0; 1]g. For K � X�, R++K will be the set 71[
t>0tK . A multivalued map T : X ! 2X�

is a map 72

whose values are subsets of X�, possibly empty. The 73

domain D(T ) of T is the set fx 2 X : T (x) ¤ ;g, its 74

graph the set gr(T ) = f(x; x�) 2 X � X� : x� 2 T (x)g 75

and its set of zeros is the set ZT = fx 2 X : 0 2 T (x)g. 76

The map T is called upper sign-continuous [13] if for 77

all x 2 D(T ) and v 2 X , the following implication 78

holds: 79

�
8t 2 (0; 1); inf

x�2T (x+tv)
hx�; vi � 0

�

) sup
x�2T (x)

hx�; vi � 0:
80

If T is upper hemicontinuous (i. e., its restriction on 81

line segments is upper semicontinuous with respect 82

to the weak� topology in X�), then it is upper sign- 83

continuous. 84
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2 Pseudomonotone Maps: Properties and Applications

The map T is called monotone if for every (x; x�),85

(y; y�) 2 gr(T ), hy� � x�; y � xi � 0; it is called86

maximal monotone if its graph is not strictly contained87

in the graph of any other monotone map. Also, T is88

called D-maximal monotone if its graph is not strict-89

ly contained in the graph of any other monotone map90

with the same domain.91

The map T is called pseudomonotone if for every92

(x; x�), (y; y�) 2 gr(T ), the following implication93

holds.94

hx�; y � xi � 0 ) hy�; y � xi � 0:95

Obviously, every monotone map is pseudomonotone.96

Given a locally Lipschitz function f : X ! R[f+1g,97

we denote by @0f its Clarke subdifferential [7]. The98

locally Lipschitz function f is called pseudoconvex if99

for every x 2 dom(f ) and x� 2 @0f (x) the following100

implication holds:101

hx�; y � xi � 0 ) f (y) � f (x):102

It is known that a locally Lipschitz function f is pseu-103

doconvex if and only if @0f is a pseudomonotone104

map [23].105

Formulation106

Maximal Pseudomonotonicity107

In order to introduce maximal pseudomonotone maps,108

one first defines an equivalence relation in the set of109

pseudomonotone maps. Two pseudomonotone maps T1110

and T2 are called equivalent if they have the same111

domain, the same set of zeros, and for each x which112

is not a common zero, the elements of T1(x) are posi-113

tive multiples of the elements of T2(x) and vice versa.114

In other words,115

(a) D(T1) = D(T2)116

(b) ZT1 = ZT2 ,117

(c) for every x 2 D(T1), R++T1(x) = R++T2(x).118

In this case we write T1 � T2. This is an equiva-119

lence relation. Another aspect of this equivalence is pro-120

vided by the Stampacchia variational inequality. Given121

a map T and a convex subset K of X, we denote by

S (T ; K) the set of all x 2 K which are solutions of the 122

VIP: 123

8y 2 K; 9x� 2 T (x) : hx�; y � xi � 0: 124

The following result holds [14]. 125

Proposition 1 Let T1; T2 be pseudomonotone maps. If 126

T1 � T2, then S (T1; K) = S (T2; K) for every convex 127

set K � X . Conversely, if S (T1; K) = S (T2; K) for 128

every line segment K and T1; T2 have weak�-compact 129

convex values, then T1 � T2. 130

Since all equivalent maps provide the same solutions 131

to VIP, one can choose any element of the equivalence 132

class to study or even find the solutions. 133

Given a pseudomonotone map T, its equivalence class 134

has a maximum with respect to graph inclusion. This 135

is simply the map T̂ defined by T̂ (x) = [S�T S (x) for 136

all x 2 D(T ). It can be shown [13] that T̂ is also given 137

by the formula 138

T̂ (x) =

8
ˆ̂<

ˆ̂:

;; if x … D(T )

R++T (x); if x 2 D(T )nZT

NLT ;x
; if x 2 ZT

139

where NLT ;x
is the normal cone at x to the set LT ;x = 140

fy 2 X : 9y� 2 T (y); hy�; y � xi � 0g. 141

A pseudomonotone map T̂ is called D-maximal pseu- 142

domonotone, if the graph of T̂ is not properly contained 143

in the graph of any other map with the same domain. 144

When the domain of T is convex, there is an equivalent, 145

more appealing definition for D-maximal pseudomono- 146

tonicity [14]: 147

Proposition 2 Let T be pseudomonotone and such that 148

D(T ) is convex. Then T is D-maximal pseudomono- 149

tone if, and only if, every pseudomonotone extension of 150

T with the same domain is equivalent to T. 151

Some properties of the set of zeros of T are provided by 152

the following proposition [14]. 153

Proposition 3 Let T be D-maximal pseudomonotone. 154

Then ZT is weakly closed in D(T ). If in addition 155

D(T ) is convex, then ZT is also convex, and z 2 ZT 156

is equivalent to 157

8(y; y�) 2 gr(T ); hy�; y � zi � 0: 158

The following proposition provides a simple criteri- 159

on for showing the D-maximal pseudomonotonicity of 160

a map [13]. 161
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Proposition 4 Assume that T is pseudomonotone,162

upper-sign continuous, with weak�-compact, convex163

values and open domain D(T ). Then T is D-maximal164

pseudomonotone.165

A simple consequence of the above proposition is:166

Corollary 5 The Clarke subdifferential @0f of a local-167

ly Lipschitz, pseudoconvex function f : X ! R [168

f+1g is a D-maximal pseudomonotone map.169

As was explained before, from the point of view of VIP170

one can use any element of the equivalence class. This171

is fortunate, since in many cases instead of showing172

that a D-maximal pseudomonotone map has a “nice”173

property (as is the case with maximal monotone maps),174

one shows that an equivalent map has this property. For175

instance, one has:176

Proposition 6 If T is D-maximal pseudomonotone,177

then T̂ (x) is convex for every x 2 D(T ). If in particu-178

lar the assumptions of Proposition 4 are satisfied, then179

T̂ (x) [ f0g is weak�-closed.180

Here is a case where one can find an equivalent map181

with a better continuity property [13]:182

Proposition 7 Let T : Rn ! 2Rn

be a pseudomono-183

tone map, upper sign-continuous, with compact convex184

values. If D(T ) is open and convex, then there exists an185

equivalent upper semicontinuous map T1 with closed186

compact values.187

For instance let T be a single-valued pseudomonotone188

map defined on an open convex subset of Rn. If T is189

hemicontinuous (i. e., continuous along line segments)190

then the above proposition guarantees that there exists191

an equivalent map which is continuous. Likewise, one192

can show that under some fairly general assumptions,193

T is equivalent to a map which is generically single-194

valued (i. e., is single valued except on a set of the first195

category). See Corollary 3.10 in [13].196

A Generalization of Paramonotone Maps197

A multivalued map T is called paramonotone if for198

every (x; x�), (y; y�) 2 gr(T ), hy� � x�; y � xi = 0199

implies that x� 2 T (y) and y� 2 T (x). It can be200

shown that the subdifferential of a proper lsc convex201

function is paramonotone [5]. Other examples of para-202

monotone maps are given in [21]. Paramonotone maps203

have been extensively used in algorithms for the solu-

tion of VIP [5,6,24]. The main reason is that these maps 204

have the following “cutting plane property”: 205

x 2 S (T ; K)
y 2 K

hy�; x � yi � 0
for some y� 2 T (y)

9
>>=

>>;
) y 2 S (T ; K): (1) 206

Assume that a map has property (1). If at the nth iter- 207

ation of an algorithm one finds a point yn that is not 208

a solution of VIP, then all solutions of VIP belong to 209

the intersection of K with the halfspace fx 2 X : 210

hy�
n ; x � yni < 0g where y�

n is an arbitrary element of 211

T (yn). 212

Let K � X be nonempty, closed and convex. A single 213

valued pseudomonotone map T : K ! X� is called 214

pseudomonotone� if for all x; y 2 K , 215

hT (x); y � xi = hT (y); y � xi = 0 216

implies that T (x) = kT (y), for some k > 0 [8]. Note 217

that single-valued pseudomonotone� maps are a gen- 218

eralization of single-valued paramonotone maps. To 219

extend this generalization to the multivalued case, one 220

needs the tools presented in the previous subsection. 221

Definition 8 [17] A map T : X ! 2X�

is pseudo- 222

monotone� on K if it is pseudomonotone and for every 223

x; y 2 K and x� 2 T (x), y� 2 T (y), hx�; y � xi = 224

hy�; y � xi = 0 imply x� 2 T̂ (y) and y� 2 T̂ (x). 225

It is easy to see that every paramonotone map is 226

pseudomonotone�. Other classes of pseudomonotone� 227

maps is provided by the following propositions [17]. 228

Proposition 9 The Clarke subdifferential @0f of a lo- 229

cally Lipschitz pseudoconvex function f is pseudo- 230

monotone�. 231

Proposition 10 If the map T is pseudomonotone�, then 232

any map equivalent to T is pseudomonotone�. 233

Proposition 9 is a particular case of a more gen- 234

eral situation. A map T is called cyclically pseu- 235

domonotone [9,10] if for every
�
xi ; x�

i

� 2 gr(T ), i = 236

1; 2; : : : ; n, the following implication holds: 237

hx�
i ; xi+1 � xi i � 0; 8i = 1; 2; : : : ; n � 1

) hx�
n ; x1 � xni � 0:

238

Proposition 11 If T is D-maximal pseudomonotone 239

and cyclically pseudomonotone with convex domain, 240

then it is pseudomonotone�. 241
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4 Pseudomonotone Maps: Properties and Applications

Since the Clarke subdifferential of a locally Lipscitz242

pseudoconvex function is D-maximal pseudomonotone243

and cyclically pseudomonotone, we see that the previ-244

ous proposition implies Proposition 9.245

We saw that paramonotone maps have the cutting plane246

property (1). The same is true for pseudomonotone�247

maps; what is more interesting is that these maps are248

characterized in some sense by the cutting plane prop-249

erty:250

Proposition 12 Let T be pseudomonotone on the con-251

vex set K. If T is pseudomonotone�, then property252

(1) holds on every subset of K. Conversely, if prop-253

erty (1) holds on every convex, compact subset of K254

and T has convex, weak�-compact values, then T is255

pseudomonotone� on the interior of K.256

If T is single-valued, the assumption of pseudomono-257

tonicity becomes redundant:258

Proposition 13 Let T : K ! X� be hemicontinu-259

ous. If T has property (1) on each convex compact sub-260

set of K, then T is pseudomonotone on K and pseudo-261

monotone� on its interior.262

In Sect. “Methods/Applications” we will show how to263

apply pseudomonotone� maps for the solution of varia-264

tional inequalities.265

Pseudoaffine Maps266

Given a convex subset K of Rn, a single-valued map267

T : K ! Rn is called pseudoaffine (or PPM, as in [3])268

if both T and �T are pseudomonotone. These maps269

were studied in [3] in connection with VIP. It is easy270

to see that a differentiable function f : K ! R is271

pseudolinear (i. e., both f and �f are pseudoconvex) if272

and only if rf is pseudoaffine. It is not hard to show273

that pseudolinear functions defined on the whole space274

Rn have a very particular form [2,25]:275

Proposition 14 A differentiable function f : Rn ! R276

is pseudolinear if and only if there exist a vector u 2277

Rn and a one-variable differentiable function h whose278

derivative is always positive or identical to zero, such279

that f (x) = h (hu; xi).280

If T = rf in this case, then T (x) = h0 ( u; x), i. e.,281

T is equal to a positive multiple of a constant vector.282

For general pseudoaffine maps (i. e., those that are not283

necessarily equal to a gradient) that are defined on the284

whole space, the following elegant characterization has 285

been shown: 286

Proposition 15 A map T : Rn ! Rn is pseudoaffine 287

if and only if there exists a positive function g : Rn ! 288

R, a skew-symmetric linear map A and a vector u such 289

that 290

8x 2 Rn; T (x) = g(x)(Ax + u): 291

The proof of the above result needs some “global” argu- 292

ments provided by algebraic topology and by projective 293

geometry [2]. 294

Pseudomonotone vs. Monotone Maps 295

One of the basic differences between the class of mono- 296

tone maps and the class of pseudomonotone maps has 297

to do with their stability with respect to some oper- 298

ations. For instance, the class of monotone maps is 299

stable with respect to addition (i. e., the sum of two 300

monotone maps is monotone), while this is not the case 301

for pseudomonotone maps. By contrast, the product of 302

a pseudomonotone map with a positive function pro- 303

duces a pseudomonotone map while this is not the case 304

for monotone maps. 305

In particular, it was noted in [1] that a map T : X ! 306

2X�

is monotone if and only if for every x� 2 X� the 307

map T + x� is pseudomonotone. More recently He [18] 308

and Isac and Motreanu [20] obtained another result in 309

this direction. Assume that X is a Hilbert space (in [18] 310

one considered X = Rn) and K � X is a convex set 311

with nonempty interior. Let further T : K ! X� be 312

a continuous single-valued map which is Gâteaux dif- 313

ferentiable in the interior of K. Then T is monotone if 314

and only if T + x� is pseudomonotone for all x� in 315

a straight line of X�. The differentiability assumption is 316

essential in the argument of both papers [18,20] because 317

the proof is based on a first-order characterization of 318

generalized monotonicity. 319

In a recent paper [15] it was shown that the differentia- 320

bility assumption is redundant, and one can also weak- 321

en considerably the assumption that the interior of K is 322

nonempty. Given x� 2 X� and a set K � X , one says 323

that x� is perpendicular to K if the value of x� is con- 324

stant on K, i. e., hx�; y � xi = 0 for all x; y 2 K . The 325

following proposition holds. 326

Proposition 16 Let K � X be nonempty and con- 327

vex and T : K ! 2X�

be a map with nonempty 328
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values. Assume that there exists a straight line S =329 ˚
x�

0 + tx� : t 2 R
�

in X� such that x� is not perpendic-330

ular to K, and for all z� 2 S , T +z� is pseudomonotone.331

Then T is monotone.332

In case K has nonempty interior or, more generally,333

nonempty quasi-interior, the assumption “x� is not per-334

pendicular to K” is automatically fulfilled. It should335

also be noted that the results of this subsection are also336

true if we replace “pseudomonotone” by “quasimono-337

tone” (see the article � Generalized monotone multi-338

valued maps in this Encyclopedia for the definition).339

Methods/Applications340

Many of the algorithms used to find a solution of a vari-341

ational inequality with a paramonotone map, can be342

also used in the more general case of a pseudomono-343

tone� map. We illustrate this by an example of a per-344

turbed auxiliary problem method. Let K be a closed345

convex subset of a Hilbert space H, T : K ! 2H a map346

with nonempty values. Choose a Gâteaux differentiable347

strongly convex function M : H ! R with a weakly348

continuous derivative (we can take for instance M (x) =349

kxk2 /2). Construct a sequence fxkgk2N by the follow-350

ing algorithm.351

(i) Choose an arbitrary x0 2 K .352

(ii) Having chosen xk , find xk+1 2 K353

and x�
k+1 2 T (xk+1) such that354

8y 2 K; h�kx�
k+1 + M 0(xk+1)

� M 0(xk); y � xk+1 i � 0
355

where f�kgk2N is a sequence of positive constants356

bounded from below. Note that finding xk+1 amounts to357

solving VIP for the perturbed map Tk+1(�) = �k+1T (�) +358

M 0(�) � M 0(xk). This problem can be much easier than359

the original one, since for instance if T is weakly mono-360

tone and �k+1 is small, then Tk+1 is strongly monotone.361

Assume that VIP has a solution and that the sequence362

fxkgk2N is well-defined. Then it can be shown that if T363

is pseudomonotone� and satisfies a fairly general conti-364

nuity condition, then the sequence fxkgk2N converges365

weakly to a solution of VIP for T. Details can be found366

in [17].367

Conclusions368

The theory of pseudomonotone maps is far from been369

developed to a satisfactory level. By contrast, the theory370

of monotone maps has reached a high level of maturi- 371

ty [19]. It is hoped that some of the recent advances pre- 372

sented here, and in particular the ideas on maximality of 373

pseudomonotone maps, will provide a firm background 374

for the study of pseudomonotone maps. This is illustrat- 375

ed by the ease and naturalness with which notions like 376

paramonotonicity can be generalized to pseudomono- 377

tone maps, a task that seemed almost impossible before 378

the introduction of maximal pseudomonotone maps. In 379

addition, the new notion of a pseudomonotone� map 380

seems to be ideally fit the cutting plane property (see 381

Proposition 12) and this adds some confidence that the 382

definition of maximality is on the right way. 383
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