ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΜΑ:

ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ

ΚΑΤΣΟΥΓΙΑΝΝΗ ΣΤΥΛΙΑΝΗ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:
ΝΙΚΟΛΑΟΣ ΖΑΧΑΡΟΠΟΥΛΟΣ

ΜΕΛΗ ΕΠΙΤΡΟΠΗΣ:
ΠΑΡΑΣΚΕΥΑΣ ΠΑΠΑΝΙΚΟΣ
ΕΥΓΕΝΙΟΣ ΣΚΟΥΡΜΠΟΥΤΗΣ

ΣΥΡΟΣ 2008
ΠΕΡΙΕΧΟΜΕΝΑ

ΕΙΣΑΓΩΓΙΚΑ

<table>
<thead>
<tr>
<th>Κεφάλαιο</th>
<th>Περιεχόμενα</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Στόχος της διπλωματικής εργασίας</td>
</tr>
<tr>
<td>II.</td>
<td>Κίνητρα για τη συγγραφή της διπλωματικής εργασίας</td>
</tr>
<tr>
<td>III.</td>
<td>Δομή</td>
</tr>
</tbody>
</table>

ΚΕΦΑΛΑΙΟ 1

ΑΕΙΦΟΡΟΣ ΣΧΕΔΙΑΣΗ - ΣΧΕΔΙΑΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ

<table>
<thead>
<tr>
<th>Παράγραφος</th>
<th>Περιεχόμενα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Εισαγωγή στην έννοια της Αειφορίας</td>
</tr>
<tr>
<td>1.2</td>
<td>Από την Αειφορία στη Σχεδίαση για το Περιβάλλον</td>
</tr>
<tr>
<td>1.3</td>
<td>Κύκλος Ζωής Υλικών/ Προϊόντων</td>
</tr>
<tr>
<td>1.4</td>
<td>Συστημική προσέγγιση της αειφόρου σχεδίασης</td>
</tr>
<tr>
<td>1.5</td>
<td>Αξιολόγηση Κύκλου Ζωής</td>
</tr>
</tbody>
</table>

ΚΕΦΑΛΑΙΟ 2

ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΟΛΥΜΕΡΗ

<table>
<thead>
<tr>
<th>Παράγραφος</th>
<th>Περιεχόμενα</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Γενικά</td>
</tr>
<tr>
<td>2.2</td>
<td>Ιστορικά</td>
</tr>
<tr>
<td>2.3</td>
<td>Δομή πολυμερών</td>
</tr>
<tr>
<td>2.4</td>
<td>Γενικά χαρακτηριστικά πολυμερών</td>
</tr>
<tr>
<td>2.5</td>
<td>Ταξινόμηση πολυμερών</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Μέτρο ελαστικότητας- όριο διαρροής- αντοχή στον εφελκυσμό</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Θερμοκρασία τήξης – θερμοκρασία υαλώδους μετάπτωσης</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Αφρώδη</td>
</tr>
<tr>
<td>2.8</td>
<td>Τεχνικές μορφοποίησης</td>
</tr>
<tr>
<td>2.9</td>
<td>Εφαρμογές</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Βιοδιάσπαση</td>
</tr>
</tbody>
</table>

ΚΕΦΑΛΑΙΟ 3

ΕΙΣΑΓΩΓΗ ΣΤΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ

<table>
<thead>
<tr>
<th>Παράγραφος</th>
<th>Περιεχόμενα</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Εισαγωγή</td>
</tr>
<tr>
<td>3.2</td>
<td>Η έννοια της βιοδιάσπασης</td>
</tr>
<tr>
<td>3.3</td>
<td>Η έννοια της κομποστοποίησης</td>
</tr>
<tr>
<td>3.4</td>
<td>Ιστορικά</td>
</tr>
<tr>
<td>3.5</td>
<td>Κύκλος ζωής βιοδιασπώμενων πολυμερών</td>
</tr>
<tr>
<td>3.6</td>
<td>Ταξινόμηση βιοδιασπώμενων πολυμερών</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Βιοδιασπώμενοι πολυεστέρες</td>
</tr>
<tr>
<td>3.7</td>
<td>Διεθνείς οργανισμοί πιστοποίησης</td>
</tr>
<tr>
<td>3.8</td>
<td>Περιβάλλοντα βιοδιάσπασης</td>
</tr>
</tbody>
</table>
3.9 Εφαρμογές ... 63
3.10 Κυρίωτερες εταιρείες παραγωγής βιοδιασπώμενων υλικών και προϊόντων...... 64
3.11 Μελλοντικές προβλέψεις ... 66
3.12 Μειονεκτήματα βιοδιασπώμενων πολυμερών ... 70

ΚΕΦΑΛΑΙΟ 4 .. 72
ΦΥΣΙΚΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ... 72
4.1 Εισαγωγή .. 72
4.2 Πολυμερικά βιοϋλικά ... 73
 4.2.1 Κολλογόνο ... 74
 4.2.2 Χιτίνη – χιτοσίνη ... 75
4.3 Φυσικές ίνες .. 76
4.4 Βιοδιασπώμενα πολυμερή με βάση το άμυλο ... 78
 4.4.1 Εισαγωγή ... 78
 4.4.2 Θερμοπλαστικό άμυλο ... 78
 Σύσταση... 79
 Ιδιότητες .. 80
 4.4.3 Μίγματα άμυλου με συνθετικά βιοδιασπώμενα πολυμερή 81
 4.4.4 Βιοδιάσπαση .. 83
4.5 PHA.. 83
 4.5.1 Χημική σύσταση ... 84
 4.5.2 Παραγωγή των PHA.. 85
 4.5.3 Ιδιότητες ... 86
 4.5.4 Βιοδιάσπαση .. 88

ΚΕΦΑΛΑΙΟ 5 .. 90
ΣΥΝΘΕΤΙΚΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ................................. 90
5.1 Εισαγωγή .. 90
5.2 Συνθετικά βιοδιασπώμενα πολυμερή από ανανεώσιμες πρώτες ύλες 90
 5.2.1 PLA.. 90
 Χημική σύσταση ... 91
 Παραγωγή - Κύκλος ζωής PLA .. 92
 Ιδιότητες .. 94
 Βιοδιάσπαση ... 96
 5.2.2 PGA... 96
 Χημική σύσταση και σύνθεση .. 96
 Ιδιότητες .. 97
 Βιοδιάσπαση ... 98
 5.2.3 PLGA.. 98
5.3 Συνθετικά βιοδιασπώμενα πολυμερή από μη ανανεώσιμες πρώτες ύλες 99
 5.3.1 PVOH ή PVA... 99
 Χημική Σύσταση και σύνθεση ... 99
 Ιδιότητες .. 100
 Βιοδιάσπαση ... 101
 Χημική Σύσταση ... 101
 Ιδιότητες .. 102
 Βιοδιάσπαση ... 102
 5.3.3 AAC... 102
Χημική Σύσταση ...102
Ιδιότητες ...103
Βιοδιάσπαση ...103

5.4 Βιοδιασπώμενα σύνθετα ...104

ΚΕΦΑΛΑΙΟ 6.................................107
ΕΦΑΡΜΟΓΕΣ ΒΙΟΔΙΑΣΠΩΜΕΝΩΝ ΠΟΛΥΜΕΡΩΝ ..107

6.1 Εισαγωγή ..107
6.2 Ιστορική ..107
 6.2.1 Ράμματα ...108
 6.2.2 Ορθοπεδική - εμπυκτέυσμα υλικά ..111
 6.2.3 Μεταφορά φαρμάκου στον οργανισμό ...114
 6.2.4 Αισθητική χειρουργική ...115
 6.2.5 Κατευθυνόμενη ιστική αναγέννηση ...115
6.3 Προϊόντα περιορισμένου χρόνου χρήσης ...116
6.4 Αγροτικά προϊόντα ...122
6.5 'Υφασμα – ίνες ..123
6.6 Αυτοκινητοβιομηχανία ...125

ΚΕΦΑΛΑΙΟ 7.................................127
ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΚΥΚΛΟΥ ΖΩΗΣ ΒΙΟΔΙΑΣΠΩΜΕΝΩΝ ΠΟΛΥΜΕΡΩΝ ..127

7.1 Εισαγωγή ..127
7.2 Μεθοδολογία της Αξιολόγησης του Κύκλου Ζωής (AKZ) ..127
7.3 Αξιολόγηση Κύκλου Ζωής για παλέτα μεταφοράς από σύνθετο πολυμερούς με ενίσχυση υαλονημάτων / υλικών περιορισμένου χρόνου χρήσης ..130
 7.3.1 Καθορισμός στόχων και πεδίου ενδιαφέροντος ..132
 7.3.2 Καταγραφή των δεδομένων του κύκλου ζωής ..134
 7.3.3 Αξιολόγηση των επιπτώσεων του κύκλου ζωής ...137
 7.3.4 Ερμηνεία ..139
 7.3.5 Αποτελέσματα ...141
7.4 Μελέτες αξιολόγησης κύκλου ζωής για βιοδιασπώμενα πολυμερή ..141
 7.4.1 Θερμοπλαστικό άμυλο (TPS) ...141
 7.4.2 PHA ..143
 7.4.3 PLA ..144
 7.4.4 Σύνθετα με φυσικές ίνες ...146
 7.4.5 Πετροχημικά βιοδιασπώμενα πολυμερή ...149

ΚΕΦΑΛΑΙΟ 8.................................152
ΜΕΛΕΤΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΣΥΝΘΕΤΟΥ ΜΕ ΕΝΙΣΧΥΣΗ ΥΑΛΟΝΗΜΑΤΩΝ ΑΠΟ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ ..152

8.1 Αξιολόγηση Κύκλου Ζωής ..152
8.2 Δείκτες απόδοσης υλικού ..154
8.3 Κατάταξη των βιοδιασπώμενων πολυμερών στα διαγράμματα ιδιοτήτων υλικών155
 8.3.1 Διαγράμματα μηχανικών ιδιοτήτων- πυκνότητας ...156
 8.3.2 Διαγράμματα μηχανικών ιδιοτήτων- κατανάλωσης ενέργειας159
ΛΙΣΤΑ ΕΙΚΟΝΩΝ

Εικόνα 1.1 Πέντε παράγοντες που επηρεάζουν τη σχεδίαση προϊόντων 15
Εικόνα 1.2 Παράγοντες που επηρεάζουν την αειφόρο ανάπτυξη 17
Εικόνα 1.3 Παράγοντες που επηρεάζουν την αειφόρο σχεδίαση 18
Εικόνα 1.4 Κύκλος ζωής προϊόντων 21
Εικόνα 1.5 Η αλληλεπίδραση κατανάλωσης ενέργειας και υλικών 23
Εικόνα 1.6 Προσεγγιστικές τιμές κατανάλωσης ενέργειας στην παραγωγή, κατασκευή, χρήση και απόσυρση τεσσάρων κατηγοριών προϊόντων 24
Εικόνα 1.7 Αναπαράσταση της Αξιολόγησης Κύκλου Ζωής προϊόντων 26

Εικόνα 2.1 Η ιστορία των υλικών ... 29
Εικόνα 2.2 Αμορφο πολυμερές ... 33
Εικόνα 2.3 Ημικρυσταλλικό πολυμερές ... 33
Εικόνα 2.4 Πολυμερισμός προσθήκης ... 33
Εικόνα 2.5 Πολυμερισμός συμπίεσης ... 33
Εικόνα 2.6 Γραμμικό, διακλαδωμένο και διασταυρωμένο πολυμερές 34
Εικόνα 2.7 Διάγραμμα τάσης-παραμέτρων πολυμερούς 37
Εικόνα 2.8 Γραφική παράσταση του ειδικού ύγκου συναρτήσει της θερμοκρασίας κατά την ψύξη ... 39
Εικόνα 2.9 Σχήμα ταξινόμησης των σύνθετων υλικών 41

Εικόνες 3.1.2 Δοκιμή βιοδιάσπασης σε χώμα: Μετά από απόρριψη βιοδιασπώμενου πιάτου (2006) από άμιλο στο έδαφος, παρατήρησα η σταδιακή απόλυση μάζας έως την πλήρη βιοδιάσπασή του σε συστατικά απορροφήματα από το έδαφος. Οι φωτογραφίες δείχνουν την εξέλιξη της βιοδιάσπασης σε διάστημα 1 και 2 μηνών. 51
Εικόνα 3.3 Σήμα κομποστοποίησης στα προϊόντα ... 53
Εικόνα 3.4 Σταδιακή απόλεια μοριακού βάρους, αντοχής και μάζας βιοδιασπώμενων πολυμερών ... 54

Εικόνα 3.5 Κύκλος ζωής βιοδιασπώμενων πολυμερών από ανανέωσιμες πρώτες ύλες ... 56

Εικόνα 3.6 Κατάταξη βιοδιασπώμενων πολυμερών ... 57
Εικόνα 3.7 Αρωματικός δακτύλιος ... 58
Εικόνα 3.8 Ομάδα εστέρα... 59
Εικόνα 3.9 Βιοδιασπώμενοι πολυεστέρες ... 59
Εικόνα 3.10 Αερόβια-αναερόβια βιοδιάσπαση .. 61
Εικόνα 3.11 Εφαρμογές βιοδιασπώμενων πολυμερών ... 64
Εικόνα 3.12 Εταίρες παραγωγής βιοδιασπώμενων πολυμερών ... 64
Εικόνα 3.13 Στατιστικά δεδομένα από έρευνα που πραγματοποιήθηκε ως προς το ενδιαφέρον του κοινού για τα βιοδιασπώμενα πλαστικά 68
Εικόνα 3.14 Παγκόσμια παραγωγή βιοπλαστικών από ανανέωσιμες και συνθετικές πρώτες ύλες ... 69

Εικόνα 4.1 Μόριο DNA... 73
Εικόνα 4.2 Μόριο κολλαγόνου.. 74
Εικόνα 4.3 Μόρια (α) χιτίνης και (β) χιτοσίνης .. 76
Εικόνα 4.4 Δομή φυσικών ιών ... 77
Εικόνα 4.5 Μόριο αμιλολόξης... 79
Εικόνα 4.6 Μόριο αμυλοπικτίνης .. 80
Εικόνα 4.7 Μονομερική μονάδα αμύλου .. 80
Εικόνα 4.8 Ρυθμός βιοδιάσπασης Mater-Bi για δύο πάχη μεμβράνης συγκρινόμενος με μεμβράνη καυσταρίνης πάχους 1 mm .. 83
Εικόνα 4.9 Παραγωγή PHA στα κύτταρα βακτηρίων .. 84
Εικόνα 4.10 Χημική δομή των PHA .. 85
Εικόνα 4.11 Μηχανικές ιδιότητες PHA (η περιοχή που περικλείεται από την συνεχή καμπύλη) σε σύγκριση με αυτές τους κοινούς πολυμερών........ 86
Εικόνα 4.12 Θερμικές ιδιότητες PHA (η περιοχή που περικλείεται από την συνεχή καμπύλη) σε σύγκριση με αυτές των κοινούς πολυμερών........ 87
Εικόνα 4.13 Βιοδιάσπαση συσκευασίας σαμπουάν των PHA ... 89

Εικόνα 5.1 Σύνθεση του PLA από γαλακτικό οξύ .. 92
Εικόνα 5.2 Κύκλος ζωής του PLA .. 93
Εικόνα 5.3 Κύκλος ζωής των προϊόντων από PLA ... 97
Εικόνα 5.4 Χημική δομή του PGA .. 97
Εικόνα 5.5 Σύνθεση PGA από γλυκολικό οξύ .. 97
Εικόνα 5.6 Χημική σύνθεση του PLGA .. 98
Εικόνα 5.7 Τρόπος παρασκευής PVOH... 99
Εικόνα 5.8 Χημική σύσταση PVOH ... 100
Εικόνα 5.9 Τρόπος παρασκευής PCL ... 101
Εικόνα 5.10 Χημική σύσταση του AAC ... 103
Εικόνα 5.11 Εφαρμογές βιοσυνθέτων ... 105
Εικόνα 5.12 Κύκλος ζωής βιοσυνθέτων ... 106

Εικόνα 6.1 Ράμματα από PGA .. 109
Εικόνα 6.2 Αποκατάσταση δέρματος από βιοδιασπώμενο πολυμερές .. 110
Εικόνα 6.3 Χρήση των PHAs ως υπόστρωμα για την αποκατάσταση ιστών [33]...111
Εικόνα 6.4 Βιοδιασπώμενα εμφυτεύματα από PLA στην ορθοπεδική112
Εικόνα 6.5 Μεταφορά τάσης από το βιοδιασπώμενο εμφυτεύμα στο οστό113
Εικόνα 6.6 Μεταφορά φαρμάκου από σύστημα επιφανειακής διάβρωσης (α) και ομοιόμορφης διάβρωσης (β) ...115
Εικόνα 6.7 Μεμβράνη ιστικής αναγέννησης στα ούλα116
Εικόνα 6.8 Εφαρμογές του PHA ...118
Εικόνα 6.9 Εφαρμογές νοσοκομείου ..118
Εικόνα 6.10 Εφαρμογές βιοδιασπώμενων προϊόντων μιας χρήσης119
Εικόνα 6.11 Συσκευασίες από βιοδιασπώμενα πολυμερή121
Εικόνα 6.12 Εφαρμογές στον αγροτικό τομέα ...123
Εικόνα 6.13 Εφαρμογές από ίνες PLA ..124
Εικόνα 6.14 Εξαρτήματα αυτοκινήτου από πολυμερές βιοδιασπώμενο σύνθετο126

Εικόνα 7.1 Γενικό σχήμα της Αξιολόγησης του Κύκλου Ζωής129
Εικόνα 7.2 Παλέτα μεταφοράς ...131
Εικόνα 7.3 Ορια συστήματος (κατανάλωση ενέργειας)134
Εικόνα 7.4 Εκπομπές ρύπων σε αέρα, νερό και έδαφος137
Εικόνα 7.5 Αποτελέσματα μεθοδολογίας CST95 για παλέτες που αποτεφρώθηκαν και που απορρίφθηκαν ...138
Εικόνα 7.6 Κατανάλωση ενέργειας σε σχέση με το ποσοστό ανακύκλωσης139
Εικόνα 7.7 Σχέση μεταξύ κατανάλωσης ενέργειας και μέτρου ελαστικότητας για ίνες από γυαλί και φυσικές ίνες ..140
Εικόνα 7.8 Αξιολόγηση Κύκλου Ζωής για θερμοπλαστικό άμυλο-σύγκριση με LDPE ..142
Εικόνα 7.9 Δείκτες απόδοσης από AKZ που έχουν πραγματοποιηθεί για θερμοπλαστικό άμυλο ...142
Εικόνα 7.10 Μείωση των περιβαλλοντικών επιπτώσεων μετά τη χρήση αμυλών πολυμερών στη σύσταση για ελαστικά αυτοκινήτων143
Εικόνα 7.11 Ενεργειακές απαιτήσεις κατά την παραγωγή των PHAs και συγκεκριμένα του PHB συγκριτικά με συμβατικά πλαστικά144
Εικόνα 7.12 Η ενεργειακές απαιτήσεις κατά την παραγωγή PLA και συνθετικών πολυμερών ...145
Εικόνα 7.13 Εκπομπές αερίων θερμοκηπίου κατά την παραγωγή και απόρριψη PLA και συνθετικών πολυμερών ...146
Εικόνα 7.14 Σύγκριση ενεργειακών απαιτήσεων για παραγωγή υαλονημάτων και ινών από λινό ...147
Εικόνα 7.15 AKZ από την παραγωγή ενός ταμπλό αυτοκινήτου148
Εικόνα 7.16 Σύγκριση ΚΚ ας για σύνθετο με υαλονημάτα και ίνες καλαμού σε παλέτα μεταφοράς ...148
Εικόνα 7.17 Σύγκριση υαλονημάτων- φυσικών ίνων ..149
Εικόνα 7.18 Περιληπτικά οι δείκτες απόδοσης από AKZ για συνθετικά και βιοδιασπώμενα πλαστικά (για εμπορικά προϊόντα)151

Εικόνα 8.1 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη πυκνότητας - μέτρου ελαστικότητας ...157
Εικόνα 8.2 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη πυκνότητας-αντοχής ...158
Εικόνα 8.3 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη αντοχής- μέτρου ελαστικότητας ...159
Εικόνα 8.4 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη μέτρου ελαστικότητας- κατανάλωσης ενέργειας παραγωγής ανά μονάδα όγκου160
Εικόνα 8.5 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη αντοχής- κατανάλωσης ενέργειας παραγωγής ανά μονάδα όγκου ..161
Εικόνα 8.6 Παλέτα μεταφοράς από παράλληλες δοκούς162
Εικόνα 8.7 Γραφικός υπολογισμός του δείκτη απόδοσης α = E\(^{1/2}\)/ρ164
Εικόνα 8.8 Παλέτα μεταφοράς με συμπαγή επιφάνεια169
Εικόνα 8.9 Γραφικός υπολογισμός του δείκτη απόδοσης α = E\(^{1/3}\)/ρ170

ΛΙΣΤΑ ΠΙΝΑΚΩΝ

Πίνακας 2.1 Μηχανικές ιδιότητες βασικών πολυμερών ..38
Πίνακας 2.2 Θερμοκρασίες υαλώδους μετάπτωσης- τήξης για τα βασικά πολυμερή 39
Πίνακας 3.1 Κυριότερες εταιρίες παραγωγής βιοδιασπώμενων πλαστικών66
Πίνακας 4.1 Σύγκριση του PHB με PP ...88
Πίνακας 5.1 Σύγκριση του PLA με PET ..95
Πίνακας 7.1 Σύγκριση υαλονημάτων και φυσικών ινών148
Πίνακας 8.1 Συγκεντρωτικά στοιχεία για βιοδιασπώμενες πολυμερικές μήτρες και ίνες σύνθετων ...153
Πίνακας 8.2 Δείκτες απόδοσης υλικού ...155
Πίνακας 8.3 Αποτελέσματα αντικατάστασης των υαλονημάτων από φυσικές ίνες για την παραγωγή 1 kg ισοδύναμου σύνθετου (δοκός σε κάμψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετου165
Πίνακας 8.4 Αποτελέσματα αντικατάστασης της μήτρας PP από βιοδιασπώμενα πολυμερή για 1 kg ισοδύναμου σύνθετου (δοκός σε κάμψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετο ..166
Πίνακας 8.5 Αποτελέσματα αντικατάστασης των υαλονημάτων από φυσικές ίνες για την παραγωγή 1 kg ισοδύναμου σύνθετου (πλάκα σε κάμψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετο ..167
Πίνακας 8.6 Αποτελέσματα αντικατάστασης της μήτρας PP από βιοδιασπώμενα πολυμερή για την παραγωγή 1 kg ισοδύναμου σύνθετου (πλάκα σε κάμψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετο171
ΕΥΧΑΡΙΣΤΙΕΣ

Ευχαριστώ θερμά τον επιβλέποντα καθηγητή μου κ. Νικόλαο Ζαχαρόπουλο για την καθοδήγησή, την υποστήριξη και τον πολύτιμο χρόνο που μου προσέφερε για την ολοκλήρωσή της διπλωματικής εργασίας.

Ευχαριστώ επίσης τους καθηγητές κ. Παπανίκο Παρασκευά και κ. Σκουμπούτη Ευγένιο για τη συμβολή τους ως μέλη της επιτροπής εξέτασης.

Ιδιαιτέρως ευχαριστώ την οικογένειά μου για την αμέριστη συμπαράσταση, την κατανόηση, την εμπιστοσύνη και την υπομονή που έδειξαν καθ’ όλη τη διάρκεια της εργασίας αυτής.

Τέλος, ευχαριστώ όλους τους φίλους που με κάθε τρόπο, άμεσα ή έμμεσα, υποστήριξαν την προσπάθειά μου.
ΕΙΣΑΓΩΓΙΚΑ

I. Στόχος της διπλωματικής εργασίας

Τα βιοδιασπώμενα πολυμερή, εξαιτίας των ιδιαίτερων χαρακτηριστικών τους, αποτελούν μια πιθανή λύση στη μόλυνση του περιβάλλοντος, στις κλιματικές αλλαγές που συμβαίνουν και στο πρόβλημα διαχείρισης των αποβλήτων που δημιουργήθηκαν από τα παραδοσιακά πλαστικά, καθώς και στο πρόβλημα της εξάρτησης από το πετρέλαιο. Στόχος αυτής της εργασίας είναι η παρουσίαση μιας βιβλιογραφικής μελέτης των ιδιοτήτων και των χρήσεων των βιοδιασπώμενων πολυμερών ως μέρος της Σχεδίασης για το Περιβάλλον και η διερεύνησή της δυνατότητας χρήσης τους σε εφαρμογές όπου η σχεδίαση περιορίζεται κυρίως από τις μηχανικές ιδιότητες του υλικού, όπως το μέτρο ελαστικότητας και η αντοχή, χαρακτηριστικές ιδιότητες της συμπεριφοράς των πολυμερών. Η μελέτη των μηχανικών ιδιοτήτων πραγματοποιείται με σκοπό τη δυνατότητα επιλογής εναλλακτικών υλικών σε πιθανές εφαρμογές, σύμφωνα με τις αρχές της Σχεδίασης για το Περιβάλλον.

II. Κίνητρα για τη συγγραφή της διπλωματικής εργασίας

1. Μόλυνση του περιβάλλοντος

Τα πλαστικά και γενικά τα προϊόντα κατά την παραγωγή τους αλλά και μετά την απόρριψή τους καταναλώνουν ενέργεια και επιβαρύνουν την ατμόσφαιρα με την εκπομπή CO₂ και άλλων βλαβερών ουσιών, προκαλώντας το φαινόμενο του θερμοκηπίου το οποίο ευθύνεται για πλήθος προβλημάτων, όπως την άνοδο της θερμοκρασίας του πλανήτη και άλλων κλιματικών αλλαγών που συμβαίνουν και θέτουν σε κίνδυνο το μέλλον του πλανήτη και του ανθρώπου. Ενδεικτικά αναφέρεται ότι από το 1990 μέχρι το 2005 παρουσιάστηκε αύξηση των εκπομπών CO₂ στην Ελλάδα κατά 32% και η αύξηση αναμένεται να φτάσει το 42% μέχρι το 2012. Με την
άνοδο της στάθμης του νερού της θάλασσας οι εκτάσεις που χρησιμοποιούνται για αγροτικοτροφικές δραστηριότητες μειώνονται ενώ συγχρόνως παρουσιάζεται έλλειψη πόσιμου νερού. Επίσης, πλαστικές σακούλες και συσκευασίες χρησιμοποιούνται για λίγο και παραμένουν στο περιβάλλον για εκατοντάδες χρόνια. Τα πλαστικά με το να παραμένουν αδιάσπαστα για 300-400 περίπου χρόνια μετά την απόρριψή τους αποτελούν εστία μόλυνσης και πηγή κινδύνων, τόσο για τη χλωρίδα, όσο και για την πανίδα μιας περιοχής, καθώς επίσης και για την χλωρίδα και πανίδα των θαλασσών και των οικειον. Συγκεκριμένα, 100.000 θαλάσσια θηλαστικά πεθαίνουν κάθε χρόνο από 1 τρισεκατομμύριο πλαστικές σακούλες που καταναλώνονται παγκοσμίως και καταλήγουν στη θάλασσα. Επιπλέον, οι τοξικές ουσίες που περιέχονται στα πλαστικά εντείνουν το φαινόμενο της μόλυνσης του περιβάλλοντος.

2. Πρόβλημα διαχείρισης των πλαστικών απορριμμάτων

Στα περισσότερα μέρη του κόσμου αντιμετωπίζεται σοβαρό πρόβλημα ως προς τον τρόπο διαχείρισης των αποβλήτων γενικά, και ειδικότερα των αποβλήτων που απαιτούν το περισσότερο χρόνο για να διασπαστούν, όπως είναι τα πλαστικά. Από τη δεκαετία του 1980 ήδη άρχισε να γίνεται αισθητό το πρόβλημα της έλλειψης χώρου απόθεσης των απορριμμάτων σε όλο το δυτικό κόσμο. Η δραματική αύξηση των απορριμμάτων οδήγησε σε αυξημένη ανάγκη για δημιουργία χωματερών. Το γεγονός αυτό επιβαρύνει ακόμα περισσότερο τη μόλυνση του περιβάλλοντος που προκαλούν τα συσσωρευμένα απορρίμματα. Συγχρόνως, κατά την απότεφρωση των πλαστικών απορριμμάτων, καταναλώνονται τεράστια ποσά ενέργειας. Στις χώρες του Δυτικού κόσμου το πρόβλημα είναι έντονο και ήδη αναζητούνται τρόποι επίλυσης του. Στους τρόπους επίλυσης που εφαρμόζονται σε κάθε περίπτωση, η ύπαρξη πλαστικών απορριμμάτων δυσχερεύει τη διαδικασία της διάσπασης, τη στιγμή που τα πλαστικά απορρίμματα παραμένουν στο περιβάλλον για εκατοντάδες χρόνια.

Από στατιστικά στοιχεία που δόθηκαν και αφορούν τις Η.Π.Α. από το αρμόδιο Υπουργείο (Office of Solid Waste and Emergency Response) παρατηρήθηκε μια αύξηση στο σύνολο των απορριμμάτων της τάξης του 30% από το 1960 ως το 2000. Το 1960, τα πλαστικά αποτελούσαν μόλις το 1% του συνόλου των απορριμμάτων. Το 2000, το ποσοστό αυτό έφτασε το 10.7%. Από αυτό, σχεδόν το 50% αποτελούσαν
δοχεία και υλικά συσκευασίας. Στην Ελλάδα το πρόβλημα της διαχείρισης των
αποβλήτων είναι υπαρκτό εδώ και αρκετά χρόνια και σύμφωνα με τη σχετική
νομοθεσία [Νόμος 2939/6-8-2001] αναζητούνται νέοι τρόποι αντιμετώπισης του
προβλήματος με εναλλακτική διαχείριση των αποβλήτων, κυρίως των προϊόντων που
χρησιμοποιούνται για λίγο και συχνά ή που η εναπόθεσή τους στο περιβάλλον
επιφέρει σημαντικό μόλυνση όπως συσκευασίες και μεταχειρισμένα ελαστικά
οχημάτων ακόμα και των ίδιων των οχημάτων και των εξαρτημάτων τους μετά το
τέλος του κύκλου ζωής τους. Τα παραπάνω είδη αποβλήτων, καθώς και πολλά
ακόμη, προέρχονται κυρίως από προϊόντα που κατασκευάζονται από πολυμερικά
υλικά.

3. Πλαστικά και ανακύκλωση

Θεωρητικά, τα περισσότερα θερμοπλαστικά που χρησιμοποιούνται σε εφαρμογές
eίναι δυνατό να ανακυκλωθούν. Όμως σήμερα δεν είναι οικονομικά συμφέρουσα η
anακύκλωση πλαστικών, εξαιτίας της ποικιλίας φυσικών και χημικών ιδιοτήτων που
διαθέτουν και της πολυπλοκότητας της διαδικασίας που προκύπτει από αυτήν. Η
anακύκλωση του πλαστικού γίνεται σε ένα πολύ μικρό ποσοστό σήμερα ενώ το
mεγαλύτερο πρόβλημα είναι η ποικιλία των πλαστικών υλικών και η δυσκολία στην
περισυλλογή και στην αξιοποίησή τους, αν δεν προηγηθεί ένα δαπανηρό στάδιο
dιαχωρισμού. Συγχρόνως, η ανακύκλωση δεν είναι εφικτή σε όλες τις περιπτώσεις,
enώ μετά το πέρας της διαδικασίας το υλικό υποβιβάζεται ως προς τις ιδιότητές του.

Από τα έξι είδη πλαστικών που χρησιμοποιούνται περισσότερο, μόνο τα δύο
dιαθέτουν εκανοποιητικές δυνατότητες ανακύκλωσης, το PET και το HDPE. Ακόμα
και σε αυτές τις περιπτώσεις όμως υπάρχουν περιορισμοί. Αρκετά προγράμματα
anακύκλωσης δέχονται συγκεκριμένα είδη και εφαρμογές πλαστικών και οι
εφαρμογές πουκίλουν σε μεγάλο βαθμό. Επιπλέον, τα σύνθετα από πολυμερικά υλικά
δεν ανακυκλώνονται εξαιτίας της δυσκολίας να διαχωριστούν τα υλικά μετά τη
χρήση τους. Γενικά, η ανακύκλωση δεν λόγει το πρόβλημα της διαχείρισης των
πλαστικών, αλλά το επιβραδύνει, τη στιγμή που αργά ή γρήγορα, τα πλαστικά θα
βρεθούν στους χώρους ταφής των απορριμμάτων.
4. Εξάρτηση από το πετρέλαιο

Τα τελευταία χρόνια η τιμή του πετρελαίου έχει αυξηθεί ανησυχητικά, προκαλώντας πλήθος προβλημάτων σε όλο τον κόσμο. Είναι γνωστό ότι τα αποθέματα πετρελαίου εξαντλούνται και για το λόγο αυτό αναζητούνται εναλλακτικές πηγές πρώτων υλών και ενέργειας. Τα πλαστικά αποτελούν μια υποκατηγορία προϊόντων με άμεση εξάρτηση από το πετρέλαιο αφού παράγονται από πετροχημικά υλικά. Η εκμετάλλευση φυσικών πρώτων υλών προκαλεί ανησυχία, προκαλώντας πλήθος προβλημάτων σε όλο τον κόσμο. Είναι γνωστό ότι τα αποθέματα πετρελαίου εξαντλούνται και για το λόγο αυτό αναζητούνται εναλλακτικές πηγές πρώτων υλών τα πλαστικά, αποτελεί μια λύση που αξίζει να δοκιμαστεί και να υλοποιηθεί. Τα βιοδιασπώμενα πλαστικά που προέρχονται από φυσικές, ανανεώσιμες πηγές υλικών, προσφέρουν μια ικανότητα μεταμορφώσης εφαρμογών που αξίζει να δοκιμαστεί και να υλοποιηθεί.

5. Πλεονέκτημα σε συγκεκριμένες εφαρμογές (Ιατρική)

Ένα βιοδιασπώμενο πολυμερές γενικά δεν χρησιμοποιείται απλά και μόνο επειδή είναι βιοδιασπώμενο, επιπλέον πρέπει να μπορεί να είναι ανταγωνιστικό σε υλικά εξαιτίας των ιδιοτήτων του, υψηλού και μηχανικών, σε σχέση με το κόστος του, και έχοντας την ικανότητα βιοδιάσπασης ως επιπλέον πλεονέκτημα. Η εφαρμογή των βιοδιασπώμενων πολυμερών στην Ιατρική συνοδεύεται από πολλά πλεονέκτημα σε πλήθος εφαρμογών. Σε εφαρμογές όπως εμφυτεύματα, μεσοχώματα, διανομή φαρμάκου στον οργανισμό και αποκατάστασης ιστών, τα υλικά που χρησιμοποιούνται πρέπει να είναι συμβατά με τον οργανισμό και να μην προκαλούν παρενέργειες. Σε πολλές περιπτώσεις η βιοδιάσπαση των υλικών αυτών και η απορρόφησή τους από τον οργανισμό θεωρείται σημαντικό πλεονέκτημα αφού απαλλάσσει τον ασθενή από επιπλέον χειρουργικές επεμβάσεις αφαιρέσης τους και επιπλέον ωφελεί στην αποκατάσταση καταγμάτων, σε σχέση με άλλα υλικά όπως τα μεταλλικά εμφυτεύματα.
Το Βιοδιάσπομένο Πολυμέρο

Παρουσιάζεται μια ανάλυση των βασικών χαρακτηριστικών, ιδιοτήτων και εφαρμογών των κυριότερων εκπροσώπων των βιοδιασπόμενων πολυμερών. Οι Αξιολογήσεις Κύκλου Ζωής για εφαρμογή σύνθετων με βιολογικά συστήματα και παθητική αντικατάσταση των υαλονήματων από φυσικές ή πλαστικές είναι μια από τις απαιτήσεις της αειφόρου σχεδίασης.
ΑΕΙΦΟΡΙΑ-ΣΧΕΔΙΑΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ

1.1 Εισαγωγή στην έννοια της Αειφορίας

Sustainability: “...development that meets the needs of the present World without impacting the ability of future generations to meet their own needs.”
— World Commission of Environment & Development, 1987

Υπό ιδανικές συνθήκες, η διάρκεια ζωής των προϊόντων θα συνέπιπτε με τη διάρκεια ζωής των υλικών που τα αποτελούν. Στις μέρες μας, τα περισσότερα αντικείμενα της καθημερινής ζωής έχουν πολύ μικρότερη διάρκεια ζωής από τα υλικά που τα αποτελούν. Αυτό έχει σαν αποτέλεσμα την υπερβολική κατανάλωση μη ανανεώσιμων πρώτων υλών και ενέργειας, την εκπομπή αερίων που ενισχύουν το φαινόμενο του θερμικού, κυρίως CO2, και την επιβάρυνση του περιβάλλοντος με μεγάλο όγκο απορριμμάτων τα οποία παραμένουν αδιάσπαστα για εκατοντάδες χρόνια. Προκειμένου να αποφευχθεί περαιτέρω καταστροφή του περιβάλλοντος και κατά συνέπεια υποβάθμιση της ζωής, πρέπει να ληφθούν μέτρα αντιμετώπισης αυτών των φαινομένων σε όλους τους τομείς, ακόμα και στη σχεδίαση και παραγωγή προϊόντων.

Είναι γνωστό πως κάθε ανθρώπινη ενέργεια έχει και τον ανάλογο αντίκτυπο στο περιβάλλον. Οι δραστηριότητες της σύγχρονης κοινωνίας έχουν εξαπέλυσε την ανοχή του περιβάλλοντος και έχουν οδηγήσει σταδιακά στην υποβάθμιση της ποιότητας της σύγχρονης ζωής αλλά και στην απειλή της επιβίωσης των επόμενων γενεών. Οι επιπτώσεις είναι ορατές τόσο σε τοπικό (συσσώρευση αποβλήτων) όσο και σε παγκόσμιο επίπεδο (κλιματικές αλλαγές). Σύμφωνα μάλιστα με μια διαπίστωση [1], με την παγκόσμια ανάπτυξη να φτάνει σε ποσοστό το 3% το χρόνο, αναμένεται τα επόμενα 20-25 χρόνια να γίνει εξορυκτική, επεξεργασία και απόρριψη περισσότερων
υλικών από όσων έχουν χρησιμοποιηθεί σε ολόκληρη την ιστορία της ανθρώποτητας. Συγχρόνως, υπολογίζεται ότι η κατανάλωση πετρελαίου είναι 100.000 φορές μεγαλύτερη από αυτή που μπορεί να παράγει η φύση. Ακόμα, το 2003, η εκπομπή αερίων από τα αυτοκίνητα προκάλεσε περισσότερους θανάτους από ότι τα τροχαία ατυχήματα. Το γεγονός αυτό κάνει φανερή την ανάγκη για εύρεση δραστικών και αποτελεσματικών λύσεων ως προς τη χρήση εναλλακτικών πρώτων υλών και πηγών ενέργειας.

Η σχεδίαση προϊόντων επηρεάζεται από εξωτερικούς παράγοντες οι οποίοι στο πέρασμα του χρόνου μεταβάλλονται και ο σχεδιαστής οφείλει να τους παρακολουθεί συνεχώς. Σύμφωνα με μαρτυρίες σχεδιαστών, οι δυνάμεις αυτές που δημιουργούν το περιβάλλον στο οποίο υλοποιείται ο σχεδιασμός είναι πέντε: η αγορά, η τεχνολογία, το επενδυτικό κλίμα, η απαίτηση για καθαρό περιβάλλον και η απαίτηση για καλαίσθητα προϊόντα (Εικ.1.1). Η απαίτηση για την ελαχιστοποίηση της οικολογικής επιβάρυνσης που προέρχεται από τα παραγόμενα προϊόντα κάνει επιτακτική την ανάγκη για Σχεδίαση για το Περιβάλλον (design for the environment-DfE) και, μακροπρόθεσμα, για σχεδιασμό με βάση τις αρχές της Αειφορίας (sustainable development) [2].

Τεχνολογία

Αγορά

Σχεδίαση προϊόντων

Οικονομία

Αισθητική

Περιβάλλον

Εικόνα 1.1 Πέντε παράγοντες που επηρεάζουν τη σχεδίαση προϊόντων

Η αειφορία είναι συνώνυμη της αειφόρου ανάπτυξης ή αλλιώς της βιώσιμης ανάπτυξης. Ετυμολογικά, πρόκειται για την εσκεμμένη παραγωγή ενός αγαθού με
τέτοιο τρόπο ώστε να μην μειώνεται αλλά να βελτιώνεται η παραγωγική ικανότητα και να μην επηρεάζονται οι περιβαλλοντικές σχέσεις του. Η αειφορία θεωρείται χαρακτηριστικό μιας διαδικασίας ή κατάστασης που μπορεί να διατηρηθεί σε ένα συγκεκριμένο επίπεδο επ’ αόριστο. Σε περιβαλλοντικό επίπεδο, αναφέρεται στην ενδεχόμενη μικροβιότητα ζωτικών συστημάτων για τον άνθρωπο και το περιβάλλον, όπως το πλανητικό κλιματικό σύστημα. Ως έννοια χρησιμοποιήθηκε για πρώτη φορά στην Παγκόσμια συνδιάσκεψη για το Περιβάλλον και την Ανάπτυξη το 1987 από τον Harlem Brudland ενώ επίσημα καθιερώθηκε το 1992. Ο Διεθνής Οργανισμός Περιβάλλοντος και Ανάπτυξης (1987) ορίζει την έννοια της αειφορίας ως την «ανάπτυξη που καλύπτει τις ανάγκες του παρόντος κόσμου, χωρίς να διακυβεύει το δικαίωμα των μελλοντικών γενεών να καλύψουν και τις δικές τους ανάγκες» [2]. Από τότε χρησιμοποιείται ευρέως, ιδιαίτερα με την έννοια της περιβαλλοντικής αειφορίας, για να εκφράσει το σύστημα στο οποίο οι ανθρώπινες δραστηριότητες, τόσο σε παγκόσμιο όσο και σε τοπικό επίπεδο, δεν παρεμποδίζουν τον κύκλο ζωής της φύσης και που συγχρόνως δεν υποβαθμίζουν τους φυσικούς πόρους που θα κληρονομήσουν οι επόμενες γενιές.

Βασικοί στόχοι της αειφορίας ανάπτυξης είναι η ποιότητα του περιβάλλοντος και η κοινωνική ισότητα με το ελάχιστο δυνατό κόστος (Εικ.1.2). Μέχρι τώρα, οι σχεδιαστές και κατασκευαστές αγνοούσαν κατά τη σχεδιαστική και παραγωγική διαδικασία τις επιπτώσεις που πιθανώς αυτές να είχαν στο περιβάλλον. Η στροφή προς την αειφορία απαιτεί ριζικές αλλαγές, σε κοινωνικό και πολιτικό επίπεδο. Στο πλαίσιο αυτό, ο ρόλος της σχεδίασης είναι η προώθηση της αλλαγής, η σύλληψη και η ανάπτυξη των συστημάτων που θα οδηγήσουν στην αλλαγή αυτή [3]. Η έννοια της «περιβαλλοντικής αειφορίας» εκφράζει βασικά τη διατήρηση των φυσικών πόρων και τη χρήση πηγών ενέργειας και πρώτων υλών που είναι ανανεώσιμες, δηλαδή ανεξάντλητες, ως αντικαταστάτες υλικών όπως το πετρέλαιο, ενώ συγχρόνως ενθάληται την αύξηση της βιομάζας[1]. Στοχεύει επίσης στη μείωση της κατανάλωσης ενέργειας και της εκπομπής αερίων του θερμοκηπίου από βιομηχανίες,

1 Η βιομάζα αποτελεί τη συνολική μάζα των ζωντανών οργανισμών, στη συγκεκριμένη περίπτωση την δέντρα και πράσινα φυτά.
στη μείωση του όγκου των απορριμμάτων και στην εφαρμογή της επαναχρησιμοποίησης, ανακύκλωσης και κομποστοποίησης.

Εικόνα 1.2 Παράγοντες που επηρεάζουν την αειφόρο ανάπτυξη

Η αειφόρος ανάπτυξη θέτει ουσιαστικά ερωτήματα οικονομικού, κοινωνικού και περιβαλλοντικού περιεχομένου για τις επιπτώσεις των ανθρωπίνων ενεργειών τόσο εντός των παρόντων γενικών όσο και των μελλοντικών. Με την αειφόρο ανάπτυξη, γενικά, πραγματοποιείται εφαρμογή αναπτυξιακών προσεγγίσεων οι οποίες είναι συμφέρουσες σε οικονομικό και περιβαλλοντικό επίπεδο, ενώ συγχρόνως ενισχύουν την ποιότητα ζωής των ανθρώπων.

1.2 Από την Αειφορία στη Σχεδίαση για το Περιβάλλον

Η αειφόρος σχεδίαση ή Σχεδίαση για το Περιβάλλον (Design for the Environment, Green-Design, Eco-Design) αποτελεί μέρος της αειφόρου ανάπτυξης και ερμηνεύεται γενικά ως η τέχνη του να σχεδιάζεις προϊόντα και συστήματα με τρόπο που να συμφωνεί με τις αρχές της οικονομικής, κοινωνικής, οικολογικής και αισθητικής αειφορίας (Εικ.1.3) [3]. Πιο συγκεκριμένα, η αειφόρος σχεδίαση είναι μια δραστηριότητα στρατηγικού σχεδιασμού που αποσκοπεί στη σύλληψη και ανάπτυξη λύσεων που προώθουν την αειφορία. Οι λύσεις αυτές αφορούν στα συστήματα προϊόντων και υπηρεσιών που βοηθούν τους ανθρώπους να ζουν καλύτερα καταναλώνοντας λιγότερες πρώτες ύλες και βελτιώνοντας το φυσικό-κοινωνικό
πλαίσιο της ζωής τους [3]. Η βέλτιστη επιλογή του κατάλληλου υλικού και των
dιεργασιών για την παραγωγή των προϊόντων συνεισφέρει στη σχεδίαση για το
περιβάλλον. Στόχος της αειφόρου σχεδίασης είναι να αλλάξει τις συμβατικές
dιαδικασίες σχεδιασμού και παραγωγής με την ενσωμάτωση περιβαλλοντικών
συντελεστών συστηματικά και αποτελεσματικά έτσι ώστε να διορθωθεί η γνωστή
περιβαλλοντική αποδόμηση, που στη συγκεκριμένη περίπτωση είναι κυρίως ορατή
tοπικά [1].

Η αειφόρος σχεδίαση βρίσκει εφαρμογή σε τομείς όπως η αρχιτεκτονική, η μηχανική,
o η βιομηχανικός σχεδιασμός, η σχεδίαση εσωτερικών χώρων και η γραφιστική.
Περιλαμβάνει τη σχεδίαση προϊόντων καθημερινής χρήσης μέχρι και τη σχεδίαση
κτιρίων ακόμα και πόλεων. Χρησιμοποιεί εργαλεία όπως η Αξιολόγηση Κύκλου
Ζωής των προϊόντων και των υλικών προκειμένου να υπολογίσει τις περιβαλλοντικές
επιπτώσεις που έχουν συγκεκριμένες επιλογές. Οι κύριοι στόχοι της αειφόρου
σχεδίασης είναι η σχεδίαση συστημάτων, χώρων, προϊόντων και υπηρεσιών με τέτοιο
τρόπο ώστε να μειώνεται η χρήση μη ανανεώσιμων πηγών ενέργειας και πρώτων
υλών ελαχιστοποιώντας τον περιβαλλοντικό αντίκτυπο[4]. Συμπερασματικά, ο
σχεδιασμός αυτός χρησιμοποιεί την άρνηση του χθες για να δημιουργήσει αισθητικά
άρτια προϊόντα για το σήμερα, λαμβάνοντας υπόψη τη διάρκεια ζωής και τη διασπασμότητά τους προκειμένου να προστατεύσει το περιβάλλον του αύριο.

Η Σχεδίαση για το Περιβάλλον επανεξετάζει ολόκληρο τον κύκλο ζωής ενός προϊόντος και προτείνει αλλαγές με σκοπό να ελαχιστοποιηθούν οι επιπτώσεις στο περιβάλλον σε όλη τη διάρκεια ζωής του προϊόντος [5]. Η προοπτική εμφάνισης των αποτελεσμάτων της μεθόδου αυτής αποβλέπει σε χρονικό ορίζοντα δέκα χρόνων, τη μέση προσδοκώμενη ζωή ενός προϊόντος. Η ανάγκη για αειφορία έχει πιο μακροπρόθεσμη εφαρμογή και υπολογίζεται ότι τα αποτελέσματα γίνονται εμφανή σε περίπου 50 χρόνια [1]. Ένας σχεδιαστής οφείλει συνεχώς να βρίσκει τρόπους να περιορίζει τις επιπτώσεις του σχεδιασμού και των προϊόντων στο περιβάλλον. Τα προϊόντα πρέπει να είναι περιβαλλοντικά ευαισθητοποιημένα και λειτουργικά στον άνθρωπο και το περιβάλλον. Το προόρισμα ελάχιστο δυνατό κόστος, η Σχεδίαση για το Περιβάλλον αποσκοπεί στην επίτευξη ορισμένων βασικών στόχων [2], κάποιοι από τους οποίους είναι οι εξής:

- Μείωση ή ελαχιστοποίηση της χρήσης μη ανανεώσιμων πρώτων υλών και τη χρησιμοποίηση υλικών από ανανεώσιμες πρώτες ύλες, οι οποίες θα προέρχονται από κοντινές περιοχές και τα υλικά να έχουν τη δυνατότητα βιοδιάσπασης και κομποστοποίησης
- Επίλυμη μη τοξικών υλικών για την κατασκευή προϊόντων
- Εφαρμογή μεθόδων μορφοποίησης που απαιτούν μικρή κατανάλωση ενέργειας
- Σχεδιασμός προϊόντων με μικρό βάρος και μεγαλύτερη διάρκεια ζωής που δεν θα πρέπει να αντικαθίστανται σε μικρό χρονικό διάστημα
- Επαναχρησιμοποίηση και ανακύκλωση των υλικών
- Μείωση εκπομπής τουξικών και βλαβερών ουσιών, συμπεριλαμβανομένου και των αερίων που εισχύουν το φαινόμενο του θερμοκηπίου, όπως το διοξείδιο του άνθρακα
- Μείωση του όγκου των απορριμμάτων

Το πιο αποδοτικό μέτρο, παρόλα αυτά, είναι η πιθανή αύξηση του κύκλου ζωής των προϊόντων, και αυτό επιτυγχάνεται εν μέρει μέσω του βιομηχανικού σχεδιασμού.
Προκειμένου μια εταιρία να υιοθετήσει κάποιες από τις αρχές της σχεδίασης για το περιβάλλον θα πρέπει να γίνει αναδιάταξη ολόκληρης της παραγωγικής διαδικασίας. Η εφαρμογή της Σχεδίασης για το Περιβάλλον (ΣγΠ) σε μια επιχείρηση περιλαμβάνει συγκεκριμένα στάδια τα οποία καλύπτουν τυπικές οργανωσιακές διαδικασίες που προκύπτουν κατά την εισαγωγή ενός προγράμματος ΣγΠ σε ένα οργανισμό ή μια εταιρία. Τα στάδια αυτά είναι τα εξής [5]:

1. Ανάλυση ευκαιριών
2. Προώθηση ΣγΠ σε μια εταιρία
3. Καθορισμός των στόχων και των στρατηγικών που θα ακολουθηθούν
4. Εφαρμογή των εργαλείων της ΣγΠ
5. Ανάπτυξη και παραγωγή του προϊόντος
6. Προώθηση του προϊόντος
7. Αξιολόγηση

Οι σχεδιαστές προϊόντων εμπλέκονται στα στάδια της ανάλυσης των ευκαιριών, εφαρμογής των εργαλείων ΣγΠ, ανάπτυξης του προϊόντος και αξιολόγησης.

1.3 Κύκλος Ζωής Υλικών/ Προϊόντων

Βασική προϋπόθεση για τη συσχέτιση της επιλογής υλικών και της σχεδίασης για το περιβάλλον είναι η κατανόηση του κύκλου ζωής των υλικών και προϊόντων σε μια εφαρμογή. Ο κύκλος ζωής των προϊόντων χωρίζεται σε 4 φάσεις:

1. Την παραγωγή του υλικού
2. Την κατασκευή του προϊόντος από το υλικό
3. Τη χρήση του προϊόντος
4. Την απόρριψη του προϊόντος μετά τη χρήση του

Από την εξέταση του κύκλου ζωής των προϊόντων διαπιστώνεται ότι ορικά και πρώτες ύλες, περισσότερα από τα οποία είναι μη ανανεώσιμα, υφίστανται επεξεργασία για να δώσουν υλικά. Στη συνέχεια τα υλικά μετατρέπονται σε προϊόντα, χρησιμοποιούνται και στο τέλος της ζωής τους απορρίπτονται (είτε ανακυκλώνονται,
είτε αποτεφρώνονται, είτε βιοδιασπώνται, είτε καταλήγουν σε χώρους υγειονομικής ταφής). Σε κάθε στάδιο του κύκλου ζωής καταναλώνεται ενέργεια και το περιβάλλον επιβαρύνεται από την αποβολή διοξειδίου του άνθρακα (CO₂) καθώς και από την αποβολή θερμότητας και άλλων βλαβερών ουσιών (Εικ.1.4). Η έκλυση των ανεπιθύμητων αυτών ουσιών ξεπερνάει την ικανότητα του περιβάλλοντος να τα απορροφά. Η αειφόρος ανάπτυξη απαιτεί λύσεις για μια μακροχρόνια ισορροπία με το περιβάλλον με τη μείωση των ροών ενέργειας σε κάθε στάδιο του κύκλου ζωής [1].

Εικόνα 1.4 Κύκλος ζωής προϊόντων

Σε κάθε εφαρμογή, ο σχεδιαστής προκειμένου να επιλέξει το υλικό που θα ελαχιστοποιήσει τον αντίκτυπο στο περιβάλλον πρέπει να εντοπίσει τη φάση εκείνη του κύκλου ζωής του συγκεκριμένου προϊόντος που έχει το μεγαλύτερο αντίκτυπο στο περιβάλλον ως προς την κατανάλωση ενέργειας, πρώτων υλών και εκπομπής βλαβερών ουσιών. Ως συμπέρασμα, γίνεται αντιληπτό ότι η προσεκτική σχεδίαση και προσέγγιση του κύκλου ζωής ενός προϊόντος, σύμφωνα με τις αρχές της αειφορίας, οδηγεί τελικά στη σχεδίαση ενός «πράσινου» προϊόντος.
1.4 Συστημική προσέγγιση της αειφόρου σχεδίασης

Προκειμένου να μελετηθεί και να επαναπροσδιοριστεί ο κύκλος ζωής των προϊόντων είναι απαραίτητο να μελετηθεί ως σύστημα. Συστημική θεωρείται η ολιστική προσέγγιση ενός φαινομένου, δηλαδή η συλλογή και οργάνωση γνώσης με σκοπό την αναζήτηση λύσεων. Η προσέγγιση αυτή θεωρεί ως σύστημα ένα σύνολο από στοιχεία τα οποία αλληλεπιδρούν σχηματίζοντας ένα ακέραιο σύνολο. Ο κύκλος ζωής προϊόντων καθώς και το σύστημα κατανάλωσης ενέργειας και πρώτων υλών μελετώντας ως σύστημα. Κατά τη διάρκεια του κύκλου ζωής των προϊόντων, ο αντίκτυπος στον περιβάλλον και στον ανθρώπινο εξαρτάται από τρεις κύριες μεταβλητές οι οποίες αλληλεπιδρούν μεταξύ τους σύμφωνα με την παρακάτω σχέση [3]:

Περιβαλλοντικός Αντίκτυπος = πληθυσμός * απαίτηση για ποιότητα ζωής* περιβαλλοντική αποδοτικότητα κοινωνικο-τεχνολογικών συστημάτων

Λαμβάνοντας υπόψη την προβλεπόμενη αύξηση του πληθυσμού και των απαιτήσεων για ποιότητα ζωής φαίνεται ότι οι συνθήκες για αειφορία μπορεί να επιτυγχάνον μόνο με την αύξηση της περιβαλλοντικής αποδοτικότητας των τεχνολογικών συστημάτων τουλάχιστον κατά 10 φορές [3]. Αυτό σημαίνει ότι μελλοντικά η κοινωνία θα πρέπει να λειτουργεί και να απολαμβάνει την ποιότητα ζωής που επιζητεί χρησιμοποιώντας μόνο το 10% των πηγών που χρησιμοποιούντας σήμερα σε μια βιομηχανοποιημένη κοινωνία. Η κατανάλωση υλικών και ενέργειας αποτελεί μέρος ενός περιόλοκου και αλληλεπιδραστικού συστήματος. Πρωταρχικοί καταλύτες της κατανάλωσης ενέργειας, όπως η αύξηση του πληθυσμού, ο αυξανόμενος πλούτος και οι νέες τεχνολογίες επιταχύνουν την κατανάλωση ενέργειας και υλικών (Εικ.1.5). Ο πλούτος όμως συνεπάγεται και μόρφωση, και κατά συνέπεια μεγαλύτερη συνειδητοποίηση των προβλημάτων που προκαλεί η υπερβολική κατανάλωση ενέργειας και υλικών, περιορίζοντας έτσι την κατανάλωση [1].
Η κεντρική ιδέα της αειφόρου σχεδίασης είναι ότι θα πρέπει να λαμβάνονται υπόψη οι συστημικές επιπτώσεις των σχεδιαστικών αποφάσεων, δηλαδή να πραγματοποιείται μια ολιστική προσέγγιση της σχεδιαστικής διαδικασίας, θεωρώντας ως κύρια στοιχεία την κατανάλωση πρώτων υλών και ενέργειας κατά τη διάρκεια του κύκλου ζωής ενός προϊόντος [2]. Οι σχεδιαστικές αποφάσεις λαμβάνονται με σκοπό την προστασία του περιβάλλοντος στο χαμηλότερο δυνατό κόστος, εξασφαλίζοντας στην κοινωνία και στις επόμενες γενιές τη δυνατότητα να ζουν σε ένα ισορροπημένο και υγιές περιβάλλον, με προϊόντα σχεδιασμένα να κάνουν τη ζωή του ανθρώπου ευκολότερη, προσέχοντας πάντα την αισθητική αρτιότητα του αποτελέσματος. Η διαδικασία αυτή είναι ιδιαίτερα περίπλοκη, αφού στις ήδη υπάρχουσες σχεδιαστικές απαιτήσεις προστίθεται ακόμα μία, η προστασία του περιβάλλοντος. Ένα προϊόν μελετάται ως σύστημα κατά τη διάρκεια ολόκληρου του κύκλου ζωής του προκειμένου να χαρακτηριστεί «πράσινο». Η λύση δεν είναι η επιλογή ενός «καλού» ή ενός «κακού» υλικού αλλά η επιλογή του κατάλληλου υλικού σύμφωνα με τις απαιτήσεις του συστήματος. Στην προσέγγιση αυτή βοηθάει ο υπολογισμός του αντίκτυπου του κύκλου ζωής ενός προϊόντος μέσω της Περιβάλλοντικής Αξιολόγησης του κύκλου ζωής των προϊόντων (Environmental Life Cycle Assessment- LCA).
Ένα προϊόν θεωρείται «πράσινο» βάσει μιας ολιστικής προσέγγισης συγκριτικά με άλλα παρόμοια προϊόντα. Για παράδειγμα, ένα αυτοκίνητο του οποίου τα εξαρτήματα είναι ανακυκλώσιμα μπορεί να είναι σχετικά «πράσινο», ένα ποδήλατο όμως θεωρείται περισσότερο «πράσινο» προϊόν, ακόμα και αν είναι φτιαγμένο από μη ανακυκλώσιμα υλικά, σύμφωνα με την ολιστική σχεδίαση [1]. Ως προς το σχεδιασμό αυτοκινήτου, οι βελτιώσεις που έχουν γίνει τα τελευταία χρόνια ως προς την κατανάλωση ενέργειας είναι πολλές. Πριν 25 χρόνια, ένα αυτοκίνητο χρειαζόταν 14 λίτρα βενζίνη για να διανύσει 100 χιλιόμετρα. Σήμερα, ένα οικογενειακό αυτοκίνητο χρησιμοποιεί 4.7 λίτρα βενζίνη για τα ίδια χιλιόμετρα. Η μείωση δηλαδή φτάνει το 1/3. Η ζωή των ελαστικών πριν 25 χρόνια ήταν περίπου 30.000 χιλιόμετρα, ενώ σήμερα πλησίαζε τα 75.000, δηλαδή παρουσιάζονται 2.5 φορές καλύτερα. Στην ίδια όμως περίοδο, η ιδιοκτησία αυτοκινήτου και η μέση απόσταση οδήγησης ανά έτος εξαπλασιάστηκαν και ξεπέρασαν κατά πολύ αυτές τις τόσο σημαντικές βελτιώσεις [1].

Εικόνα 1.6 Προσεγγιστικές τιμές κατανάλωσης ενέργειας στην παραγωγή, κατασκευή, χρήση και απόσυρση τεσσάρων κατηγοριών προϊόντων [1]

Τα προϊόντα που δεν καταναλώνουν ενέργεια κατά τη χρήση τους ονομάζονται «παθητικά», όπως για παράδειγμα τα έπιπλα (Εικ.1.6). Επομένως, η επιμήκυνση της διάρκειας ζωής αυτών των προϊόντων έχει σαν αποτέλεσμα σημαντική εξοικονόμηση ενέργειας. Ο διπλασιασμός της ζωής των παθητικών προϊόντων έχει σαν αποτέλεσμα
τον υποδιπλασιασμό της κατανάλωσης πόρων. Αντιθέτως, τα ενεργοβόρα προϊόντα (οικιακές συσκευές, αυτοκίνητα, κλιματιστικά), καταναλώνουν περισσότερη ενέργεια κατά το στάδιο της χρήσης τους. Σε αυτά, οι δυνατότητες βελτίωσης βρίσκονται στην αναθεώρηση των σταδίων χρήσης και απόσυρσής τους και όχι στο στάδιο κατασκευής τους. Στα προϊόντα αυτά δίνεται έμφαση στη χρήση ελαφρών υλικών για τη μείωση της κατανάλωσης καυσίμων στις μεταφορές, στα ηλεκτρονικά στη δυνατότητα αναμονής της λειτουργίας της συσκευής, καθώς και στη χρήση υλικών με καλύτερες θερμομονωτικές ιδιότητες σε συσκευές όπως τα ψυγεία και τα συστήματα θέρμανσης. Αν η ζωή ενός προϊόντος είναι σύντομη, σημαντικά περιβαλλοντικά οφέλη προσφέρει η εκ νέου χρήση των υλικών, η αποδόμηση ή η ανακύκλωσή τους, όπως για παράδειγμα στις συσκευασίες [1].

1.5 Αξιολόγηση Κύκλου Ζωής

Προκειμένου να υπολογιστεί η επίδραση ενός προϊόντος ή ενός συστήματος στο περιβάλλον καθ’ όλη τη διάρκεια του κύκλου ζωής του, αναπτύχθηκε η Αξιολόγηση του Κύκλου Ζωής ενός υλικού ή προϊόντος (Life Cycle Assessment ή LCA). Η αξιολόγηση του κύκλου ζωής των προϊόντων είναι μια μεθοδολογία που εντοπίζει όλες τις περιβαλλοντικές επιδράσεις και τις ανάγκες για πρώτες ύλες και ενέργεια ενός νέου προϊόντος ή υλικού κατά τη διάρκεια της σχεδίασης, της επιλογής των υλικών, της παραγωγής, της χρήσης και της απόρριψης (Εικ.1.7) [2]. Η αξιολόγηση του κύκλου ζωής ενός προϊόντος τοποθετεί την επιλογή υλικών στο κέντρο πολλών περιβαλλοντικών ερωτημάτων και αυτό γιατί η επιλογή του υλικού έχει να κάνει με τη λειτουργία του προϊόντος, τις τεχνολογίες παραγωγής και τον τρόπο απόρριψης. Μέσα από το πλαίσιο αυτό οδηγούμαστε σε ευρείες κατηγορίες περιβαλλοντικής επιδράσης που λαμβάνονται υπόψη κατά το σχεδιασμό και την επιλογή υλικών και είναι:

α) η ποσότητα και το είδος των πρώτων υλών που χρησιμοποιούνται
β) η κατανάλωση ενέργειας κατά την παραγωγή, χρήση και απόρριψη των υλικών
γ) η εκπομπή αερίων του θερμοκηπίου και άλλων βλαβερών ουσιών σε έδαφος, αέρα και νερό
δ) ο όγκος και ο τρόπος διαχείρισης των απορριμμάτων

25
Γύρω από τους κύριους αξόνες διακρίνουμε παράγοντες οι οποίοι επηρεάζουν την τελική επιλογή υλικού και ελαχιστοποιούν την επίδραση που έχει η επιλογή αυτή στο περιβάλλον.

Εικόνα 1.7 Αναπαράσταση της Αξιολόγησης Κύκλου Ζωής προϊόντων

Οι πρώτες ύλες που κατά κύριο λόγο χρησιμοποιούνται για την παραγωγή υλικών είναι μη ανανεώσιμες, που σημαίνει ότι δεν είναι ανεξάντλητες. Αυτό αποτελεί πρόβλημα της σύγχρονης εποχής, αφού παγκοσμίως παρουσιάζεται έλλειψη στις πρώτες ύλες, κυρίως στο πετρέλαιο. Η ανακύκλωση των υλικών μετά τη χρήση των προϊόντων αποσκοπεί στο να λύσει εν μέρει το πρόβλημα της έλλειψης πρώτων υλών.

Η επιστήμη των υλικών υποστηρίζει ότι για κάθε υλικό μπορεί να βρεθεί αντικαταστάτες και με αυτό τον τρόπο να ανεξαρτηστεί ο ανταγωνισμός και συγχρόνως να μεγαλώσει το απόθεμα των διαθέσιμων πρώτων υλών [5]. Κατά το σχεδιασμό ενός αντικειμένου, είναι σημαντικό να εξετάζεται η χρήση όλων των διαθέσιμων υλικών, και όχι μόνο των πιο γνωστών. Η μη ανανεώσιμη ενέργεια που καταναλώνεται για την παραγωγή ενός κιλού υλικού ονομάζεται ενέργεια παραγωγής. Η παραγωγή ενός κιλού υλικού σχετίζεται με την ανεπιθύμητη έκλυση αερίων, όπως τα CO₂, NOₓ, SOₓ.
και CH₄, τα οποία ενισχύουν το φαινόμενο του θερμοκηπίου, ιδιαίτερα το CO₂. Στα φυσικά υλικά, οι συνολική εκπομπή CO₂ περιλαμβάνει και το CO₂ που απορροφάται κατά την καλλιέργεια και ανάπτυξή τους. Για το λόγο αυτό, τα περισσότερα φυτικά υλικά έχουν ουδέτερη αποβολή CO₂, δηλαδή η ποσότητα που εκλύεται κατά την απόρρηψη του υλικού αντισταθμίζεται από την απορρόφηση CO₂ κατά την ανάπτυξη του φυτού από το οποίο παράγεται το υλικό.

Η βιομηχανία των υλικών παγκοσμίως πραγματοποιεί μια αλλαγή από τα πετροχημικά υλικά στα υλικά που είναι περιβαλλοντικά αποδεκτά και δεν επιβαρύνουν το οικοσύστημα. Μια κατηγορία υλικών που έχει χρησιμοποιηθεί σε μεγάλο βαθμό τον τελευταίο αιώνα αλλά αποδεικνύεται επικίνδυνη για το περιβάλλον και τον άνθρωπο είναι τα συνθετικά υλικά, που αποφέρουν ως αντικαταστάτες των συμβατικών υλικών σε ορισμένες εφαρμογές. Η ανάπτυξη των υπολείμματος πολυμερών, πολυμερών που αποικοδομούνται φυσικά από το περιβάλλον και δεν αφήνουν βλαβερά κατάλοιπα μετά την απόρριψή τους, είναι ένας από τους τρόπους που αποσκοπεί η απόρριψη περιβαλλοντικών απορριμμάτων στο περιβάλλον και να μειώσει τη δημιουργία νέων υλικών.

Η βιοδιασπώμενα πλαστικά χωρίζονται σε δύο ευρείες κατηγορίες: στα φυσικά και στα συνθετικά. Τα συνθετικά κατηγοροποιούνται στα βιοδιασπώμενα πολυμερή που προέρχονται από ανανεώσιμες πρώτες ύλες και σε αυτά που προέρχονται από φυτοχημικές πρώτες ύλες αλλά παρόλα αυτά που βιοποικοδομούνται, οι αντικαταστάσεις στο διάστημα τους και τον τρόπος που παράγονται από φυτοχημικές πρώτες ύλες αναπτύσσονται από την εφαρμογή οικολογικά και για λόγους αναπτυξιακά. Η χρήση σωστού του πολυμερούς υλικού δεν περιορίζεται καθόλου. Πολλές εφαρμογές επιζητούν την ιδιότητα της αποικοδόμησης, όμως για οικολογικούς λόγους αλλά για λόγους λειτουργικότητας, όπως για παράδειγμα σε εφαρμογή στην ιατρική (απορροφήσιμα ράμματα και εμφυτεύματα). Προκειμένου να γίνουν κατανοητές οι ιδιότητες, η δομή αλλά και η χρήση της εναλλακτικής αυτής ομάδας πολυμερών, είναι απαραίτητη η εισαγωγή στις βασικές έννοιες και ιδιότητες των πολυμερών.
2.1 Γενικά

Αν και τα πολυμερή αποτελούσαν συστατικό της ζωής του ανθρώπου από την αρχή της ιστορίας του, η επιστημονική προσέγγιση της δομής τους καθώς και η συνθετική παραγωγή τους αποτελούν επιτεύγματα του 20ου αιώνα. Τα πολυμερικά υλικά διακρίνονται στα φυσικά και στα συνθετικά πολυμερή. Τα φυσικά πολυμερή απαντώνταν στη φύση (ξύλο, βαμβάκι) ενώ τα συνθετικά παράγοντα από τον ανθρώπο. Ορίζουμε τα πολυμερή ως φυσικές ή τεχνητά παρασκευασμένες ύλες, αποτελούμενες από μόρια μεγάλου μοριακού βάρους, τα μακρομόρια [6]. Τα πολυμερή συνδυάζουν πλήθος πλεονεκτημάτων, όπως το ότι μπορούν να μορφοποιηθούν εύκολα και να δώσουν προϊόντα πολύπλοκης γεωμετρίας, διαθέτουν διαφάνεια, έχουν χαμηλή πυκνότητα, καλές μηχανικές ιδιότητες και αρκετά χαμηλό κόστος. Παρόλα αυτά αποδειχθεί ήδη, η χρήση των πλαστικών υλικών προκαλεί μια από τις σημαντικότερες αιτίες μόλυνσης του περιβάλλοντος. Συγχρόνως, ένα μεγάλο ποσοστό πλαστικών προϊόντων έχει σαν πρώτη ύλη το πετρελαίο, γεγονός που σημαίνει ότι η παραγωγή τους έχει άμεση εξάρτηση από την τιμή και την πολιτική του πετρελαίου, μιας μη ανανεώσιμης πρώτης ύλης.

2.2 Ιστορικά

Ο κόσμος μας είναι γεμάτος από πολυμερικά υλικά. Τα αντικείμενα που χρησιμοποιούμε καθημερινά, το χαρτί που γράφουμε, τα ρούχα που φοράμε, ακόμα και οι εμείς οι ιδίοι είμαστε φτιαγμένοι από πολυμερικές δομές. Τα πολυμερή βρίσκονται παντού στη φύση. Για παράδειγμα το ξύλο, το βαμβάκι, το μετάξι, οι ίνες των οργανισμών, τα οστά και φυσικά το DNA των κυττάρων, καθώς και η μεμβράνη που χωρίζει το ένα κύτταρο από το άλλο αποτελούν παραδείγματα φυσικών
πολυμερών. Η ιστορία των πολυμερικών υλικών ξεκινάει πριν εκατοντάδες χρόνια, όταν οι άνθρωποι χρησιμοποιούσαν τα φυσικά πολυμερή, που έχουν φυτική ή ζωική προέλευση, στην καθημερινή τους ζωή (Εικ.2.1). Παρόλα αυτά, μόλις τον 20ό αιώνα ξεκίνησε η επιστημονική προσέγγιση και παραγωγή συνθετικών πολυμερών, μετά τη λήξη του Δεύτερου Παγκοσμίου πολέμου, περίοδο ιδιαίτερης άνθησης για τον τομέα των υλικών.

Εικόνα 2.2 Η ιστορία των υλικών

Το 19ο αιώνα η χρήση των πολυμερών άλλαξε δραματικά με την παραγωγή ημι-συνθετικών πολυμερών, δηλαδή φυσικών πολυμερών που επεξεργάζονται χημικά ώστε να προκύψουν υλικά με βελτιωμένες ιδιότητες. Χαρακτηριστικής σημασίας είναι η μετατροπή του καουτσούκ σε ελαστικό καλύτερων ιδιοτήτων με την προσθήκη θείου που πρώτος παρατήρησε ο Charles Goodyear (1839), διαδικασία που αργότερα καθιερώθηκε με το όνομα βουλκανισμός. Το πρώτο πλαστικό που παρασκευάστηκε ήταν η συνθετική κυττάρινη (celluloid) το 1870. Τη δεκαετία του 1920 ο χημικός Hermann Staudinger εισήγαγε την έννοια του μακρομορίου. Ο ίδιος βραβεύτηκε με το Νόμπελ το 1953 [6]. Μετά το Δεύτερο Παγκόσμιο πόλεμο η βιομηχανία των πολυμερών είχε ραγδαία ανάπτυξη με την παραγωγή συνθετικών
πολυμερών με χημικές κατεργασίες, και αυτό συνέβη κυρίως εξαιτίας της ανεπάρκειας φυσικών πολυμερών. Έτσι, τα συνθετικά αντικατέστησαν τα φυσικά πολυμερή, δίνοντάς τους έτσι τεράστια ύδηψη, με κύριο συντελεστή ανάπτυξής της Η.Π.Α. Την εποχή αυτή αναπτύχθηκαν και τα θερμοπλαστικά πολυμερή, όπως το πολυστυρένιο (PS), το πολυαιθυλένιο (PE), το πολυπροπυλένιο (PP) και το χλωριουχό πολυβινύλιο (PVC).

2.3 Δομή πολυμερών

Η λέξη πολυμερές είναι σύνθετη και προέρχεται από το πολύς + μέρος. Τα πολυμερή είναι φυσικά ή τεχνητά παρασκευασμένα υλικά που αποτελούνται από μόρια μεγάλων διαστάσεων, τα μακρομόρια. Δομικά συστατικά των μακρομορίων είναι τα μονομερή, τα οποία ενώνονται μεταξύ τους και σχηματίζουν τη μακρομοριακή αλυσίδα των πολυμερών. Το επαναλαμβανόμενο μονομερές (A) είναι η δομική μονάδα που επαναλαμβάνεται σε όλη τη δομή του πολυμερούς. Το πολυμερές τότε έχει τη μορφή:

-Α-Α-Α-….Α-Α-Α ή [A]ν

Ο αριθμός των επαναλήψεων του μονομερούς (ν) ονομάζεται βαθμός πολυμερισμού (degree of polymerization ή β.π.). Ο β.π. έχει σχέση και με το μοριακό βάρος του πολυμερούς. Αν τα μονομερή που αποτελούν το πολυμερές είναι ενός τύπου, το μακρομόριο ονομάζεται ομοπολυμερές ενώ αν το αποτελούν διάφοροι τύποι μονομερών ονομάζεται συμπολυμερές. Ο βαθμός πολυμερισμού επηρεάζει τόσο τις φυσικές όσο και τις μηχανικές ιδιότητες των πολυμερών.

Στα πολυμερή συναντάμε τρία είδη χημικών δεσμών: ομοιοπολικούς δεσμούς κατά μήκος της αλυσίδας του μακρομορίου, που είναι και οι πιο ισχυροί, δεσμούς Van der Waals και δεσμούς υδρογόνου μεταξύ απομακρυσμένων τμημάτων της ίδιας αλυσίδας ή μεταξύ διαφορετικών μακρομορίων, οι οποίοι είναι πιο ασθενείς δεσμοί. Εξαιτίας του μεγάλου αριθμού δεσμών άνθρακα στο μόριο του πολυμερούς, η αλυσίδα του πολυμερούς είναι αδύνατο να ευθυγραμμιστεί, ενώ το μόριο
περιστρέφεται και αλλάζει συνεχώς κατευθύνσεις. Τα μόρια των πολυμερών με την ίδια σύσταση μπορούν να έχουν διαφορετική διευθέτηση των ατόμων τους, ένα φαινόμενο που ονομάζεται ισομέρεια [7].

Εικόνα 2.2 Άμορφο πολυμερές
Εικόνα 2.3 Ημικρυσταλλικό πολυμερές

Ως κρυσταλλικό θεωρείται το πολυμερές του οποίου οι μακρομοριακές αλυσίδες βρίσκονται σε διάταξη περιοδικά επαναλαμβανόμενη, ενώ άμορφο θεωρείται το πολυμερές του οποίου η δομή μοιάζει με αυτή της υγρής φάσης και δεν παρουσιάζει κανονικότητα (Εικ.2.2-3). Οι παράγοντες που επηρεάζουν την κρυσταλλικότητα των πολυμερών είναι η αρχιτεκτονική των αλυσίδων, δηλαδή αν υπάρχει συμμετρία των αλυσίδων ή αν υπάρχουν πλευρικές ομάδες. Επίσης, το βαθμό κρυσταλλικότητας επηρεάζει ο βαθμός πολυμερισμού. Με την αύξηση του βαθμού πολυμερισμού μειώνεται η κρυσταλλικότητα του πολυμερούς. Η αύξηση της θερμοκρασίας μετά τη μορφοποίηση του πολυμερούς ευνοεί την κρυστάλλωση ενώ η άσκηση μηχανικής καταπόνησης, εφελκυσμού για παράδειγμα, προκαλεί την παράλληλη διευθέτηση των αλυσίδων και επομένως διευκολύνει την κρυστάλλωση.

Τα κρυσταλλικά πολυμερή είναι γενικά πιο άκαμπτα από τα άμορφα ή ημικρυσταλλικά πολυμερή. Η αντοχή των ημικρυσταλλικών πολυμερών αυξάνεται όσο αυξάνεται ο βαθμός κρυσταλλικότητας. Η διαφάνεια στα πολυμερή έχει άμεση σχέση με την κρυσταλλικότητα. Όσο πιο μεγάλος είναι ο βαθμός κρυστάλλωσης, τόσο πιο λίγο φως περνάει από το πολυμερές και επομένως τόσο πιο αδιαφανείς είναι το υλικό. Τα άμορφα πολυμερή γενικά παρουσιάζουν διαφάνεια, ιδιότητα σημαντική για πολλές εφαρμογές, όπως σε συσκευασίες τροφίμων και φακούς επαφής.
Τα πολυμερή με μικρά μοριακά βάρη είναι σε υγρή ή αέρια κατάσταση. Τα πολυμερή με μοριακό βάρος περίπου 1000 gr/mol είναι κηρώδη στερεά ενώ τα στερεά πολυμερή έχουν συνήθως μοριακά βάρη μεταξύ 1000 και μερικών εκατομμυρίων gr/mol. Τα φυσικά χαρακτηριστικά των πολυμερών δεν εξαρτώνται μόνο από το μοριακό τους βάρος αλλά και από τις δομές των μοριακών αλυσίδων. Οι μοριακές δομές είναι γραμμικές, διακλαδιζόμενες, διασταυρωμένες και δικτυωμένες.

2.4 Γενικά χαρακτηριστικά πολυμερών

Κάποια από τα κυρίότερα χαρακτηριστικά των πολυμερών είναι τα παρακάτω:

- Αποτελούνται κυρίως από C και H.
- Έχουν χαμηλά σημεία τήξης.
- Τα πιο πολλά δεν είναι αγωγοί θερμότητας και ηλεκτρισμού.

Τα πολυμερή έχουν μικρή θερμική αγωγιμότητα και γι’ αυτό βρίσκουν εφαρμογή ως θερμομονωτικά. Επίσης χρησιμοποιούνται και ως μονοπτής ηλεκτρισμού. Η ιδιότητα αυτή οφείλεται στο γεγονός ότι οι ομοιοπολικοί δεσμοί των πολυμερών δεν επιτρέπουν ελεύθερο ηλεκτρικό φορτίο, οπότε και εμφανίζουν μεγάλη ειδική ηλεκτρική αντίσταση. Επίσης γενικά παρουσιάζουν μεγάλη αντοχή σε χημική προσβολή. Τα πολυμερικά υλικά είναι ελαφριά, δηλαδή έχουν χαμηλή πυκνότητα και αυτό γιατί τα στοιχεία H, C έχουν μικρά ατομικά βάρη ενώ η δομή των πολυμερών είναι ανοιχτή. Τα κρυσταλλικά πολυμερή παρουσιάζουν μεγαλύτερη πυκνότητα από τα άμορφα εξαιτίας της πυκνής κανονικής διάταξης. Τα πιο ελαφριά πολυμερή είναι τα θερμοπλαστικά.

Τα συνθετικά πολυμερή χωρίζονται σε δύο βασικές κατηγορίες: στα πολυμερή προσθήκης και στα πολυμερή συμπύκνωσης [8]. Τα πολυμερή προσθήκης προκύπτουν με διαδοχικές αντιδράσεις προσθήκης μονομερών μέχρι να προκύψει το τελικό πολυμερές (Εικ.2.4). Τα πολυμερή προσθήκης στην κύρια αλυσίδα έχουν μόνο άτομα άνθρακα. Τα πολυμερή συμπύκνωσης προκύπτουν με την αντιδραση δύο μορίων πολυμερών διαφορετικών ομάδων (Εικ.2.5). Τα πολυμερές που προκύπτουν συνήθως περιλαμβάνει στην κύρια αλυσίδα και άλλα άτομα εκτός από άνθρακα.
2.5 Ταξινόμηση πολυμερών

Οι όροι «πολυμερή» και «πλαστικά» συνήθως θεωρούνται συνώνυμοι. Στην πραγματικότητα όμως υπάρχει διαφορά μεταξύ τους. Το πολυμερές είναι ένα καθαρό υλικό που προκύπτει από τη διαδικασία του πολυμερισμού και συνήθως εκπροσωπεί την οικογένεια των υλικών που χαρακτηρίζονται από μακρομοριακή δομή (συμπεριλαμβανομένων και των ελαστομερών). Καθαρά πολυμερή σπάνιως χρησιμοποιούνται σε εφαρμογές. Συνήθως τα πολυμερή εμπεριέχουν και διάφορες πρόσθετες ουσίες και τότε ονομάζονται πλαστικά. Η ταξινόμησή των πολυμερών πραγματοποιείται με διάφορα κριτήρια.

Με κριτήριο την αρχιτεκτονική της αλυσίδας τους, τα πολυμερή διακρίνονται σε:

- Γραμμικά
- Διακλαδωμένα
- Διασταυρωμένα
- Δικτυωμένα
Γραμμικά είναι τα πολυμερή στα οποία οι ομάδες μονομερών συνδέονται μεταξύ τους από τα άκρα σε απλές αλυσίδες. Μεταξύ των αλυσίδων αναπτύσσονται δυνάμεις Van der Waals. Παραδείγματα πολυμερών με γραμμικές δομές είναι το πολυαιθυλένιο, το πολυβινυλοχλωρίδιο, το πολυστυρένιο, το nylon και άλλα.

Διακλαδωμένα είναι τα πολυμερή των οποίων οι κύριες αλυσίδες συνδέονται με πλευρικές αλυσίδες. Η παρουσία πλευρικών αλυσίδων μειώνει την πυκνότητα του πολυμερούς. Στα διασταυρωμένα πολυμερή οι γειτονικές πλευρικές αλυσίδες ενώνονται μεταξύ τους με ομοιοπολικούς δεσμούς (Εικ.2.6). Πολλά από τα ελαστικά υλικά είναι διασταυρωμένα. Τέλος, οι δικτυωμένα πολυμερή ονομάζονται έτσι εξαιτίας των τρισδιάστατων δικτύων που σχηματίζουν τα άτομα άνθρακα των ομάδων των μονομερών με τους τρεις ενεργούς ομοιοπολικούς δεσμούς που διαθέτουν.

Εικόνα 2.6 Γραμμικό, διακλαδωμένο και διασταυρωμένο πολυμερές

Με κριτήριο τη μηχανική συμπεριφορά τους κατά τη θέρμανση, τα πολυμερή κατατάσσονται σε τρεις μεγάλες κατηγορίες:

- Θερμοπλαστικά (thermoplastics)
- Θερμοσκληρυνόμενα (thermo sets)
- Ελαστομερή (elastomers)

Τα θερμοπλαστικά πολυμερή μαλακώνουν όταν θερμαίνονται και σκληραίνουν όταν ψύχονται. Οι διαδικασίες αυτές είναι αντιστρεπτές. Τα υλικά αυτά μορφοποιούνται με εφαρμογή θερμότητας και πίεσης. Τα θερμοπλαστικά είναι μαλακά και όλκιμα
υλικά. Τα περισσότερα γραμμικά πολυμερή είναι θερμοπλαστικά. Τα θερμοσκληρυνόμενα πολυμερή σκληραίνουν μόνιμα όταν ψύχονται, εφαρμόζεται σε αυτά τάση και δεν μαλακώνουν με θέρμανση. Είναι σκληρότερα, σιχυρότερα και πιο ψαθυρά από τα θερμοπλαστικά και διαθέτουν σταθερότητα διαστάσεων. Τα περισσότερα διασταυρωμένα και δικτυωμένα πολυμερή είναι θερμοσκληρυνόμενα, όπως για παράδειγμα το καουτσούκ, οι εποξειδικές και οι πολυεστερικές ρητίνες. Τα ελαστομερή κατά τη φόρτισή τους μπορούν να υποστούν μεγάλες παραμορφώσεις και να επανέλθουν στο αρχικό τους σχήμα όταν το φορτίο σταματήσει να υφίσταται. Έχουν μικρά μέτρα ελαστικότητας ενώ η ελαστική περιοχή στην καμπύλη τάσης – παραμόρφωσης δεν είναι γραμμική.

Με κριτήριο την προέλευση τα πολυμερή διακρίνονται σε:

- Φυσικά πολυμερή (natural polymers)
- Ημισυνθετικά πολυμερή (artificial polymers)
- Συνθετικά πολυμερή (synthetic polymers)

Τα φυσικά πολυμερή βρίσκονται στη φύση. Ημισυνθετικά ονομάζονται τα πολυμερή που προκύπτουν από χημική επεξεργασία φυσικών πρώτων υλών. Τα συνθετικά πολυμερή έχουν μη ανανεώσιμες πρώτες ύλες και συντίθενται χημικά.

2.6 Ιδιότητες πολυμερών

Η μηχανική συμπεριφορά των πολυμερών στηρίζεται κυρίως σε δύο χαρακτηριστικά: στην ακαμψία τους, δηλαδή την αντίστασή τους στην ελαστική παραμορφώση και στην αντοχή τους, δηλαδή την αντίστασή τους στη θραύση. Κάποιες από τις πιο σημαντικές μηχανικές ιδιότητες που απαιτούνται για τη μελέτη των πολυμερών είναι:

- το μέτρο ελαστικότητας E (Young’s modulus)
- το όριο διαρροής $σ_\gamma$ (yield strength)
- η αντοχή στον εφελκυσμό (tensile strength)
- η επιμήκυνση κατά τη θραύση (elongation at break)
Η συμπεριφορά των πολυμερών στις θερμοκρασιακές αλλαγές περιγράφεται γενικά από δύο τιμές. Τη θερμοκρασία ναλώδους μετάπτωσης (glass transition temperature T_g) και τη θερμοκρασία τήξης (melting temperature T_m).

2.6.1 Μέτρο ελαστικότητας- όριο διαρροής- αντοχή στον εφελκυσμό

Το μέτρο ελαστικότητας εκφράζει την ακαμψία του πολυμερούς, το όριο διαρροής εκφράζει την αντοχή του πολυμερούς μέχρι τη στιγμή που τελειώνει η ελαστική και ξεκινάει η πλαστική παραμόρφωση και η αντοχή στον εφελκυσμό εκφράζει την αντοχή του πολυμερούς μέχρι τη θραύση. Η επιμήκυνση κατά τη θραύση εκφράζει το ποσοστό επιμήκυνσης του πολυμερούς μέχρι τη στιγμή της θραύσης (Εικ.2.7). Η δοκιμή του εφελκυσμού χρησιμοποιείται για την εύρεση μηχανικών ιδιοτήτων των υλικών όπως είναι η σχέση τάσης (σ)- παραμόρφωσης (ϵ) που θεωρούνται χρήσιμες κατά το σχεδιασμό. Η ονομαστική ή μηχανική (engineering) τάση δίνεται από τον τύπο $\sigma=F/A_0$ και μετριέται σε MPa, όπου F η δύναμη που ασκείται σε επιφάνεια A_0. Για μικρές παραμορφώσεις κατά τον εφελκυσμό, η τάση με την παραμόρφωση συνδέονται με τη σχέση $\sigma=E\epsilon$. Η σχέση αυτή είναι γνωστή ως νόμος του Hooke και η σταθερά αναλογίας E είναι το μέτρο ελαστικότητας ή μέτρο του Young και μετριέται σε GPa ή psi (145 psi= 1 MPa). Όταν η τάση είναι ανάλογη της παραμόρφωσης, οι παραμορφώσεις είναι γραμμικά ελαστικές.

Τις μηχανικές ιδιότητες επηρεάζουν διάφοροι παράγοντες όπως για παράδειγμα η φύση του φορτίου που ασκείται, η διάρκεια του φορτίου, καθώς και οι περιβαλλοντικές συνθήκες, όπως η θερμοκρασία. Η αύξηση της θερμοκρασίας οδηγεί στην ελάττωση του μέτρου ελαστικότητας, στη μείωση της αντοχής εφελκυσμού και στην αύξηση της ολκιμότητας. Το μοριακό βάρος επηρεάζει την αντοχή στον εφελκυσμό. Με την αύξηση του μοριακού βάρους αυξάνεται και η αντοχή στον εφελκυσμό. Επίσης, αύξηση της κρυσταλλικότητας ενός πολυμερούς γενικά αυξάνει την αντοχή του και το υλικό τείνει να γίνει πιο ψαθυρό [7].
Το σημείο το οποίο σταματάει η ελαστική και αρχίζει η πλαστική παραμόρφωση ονομάζεται όριο διαρροής (σρ) του πολυμερούς. Το μέτρο E μπορεί να θεωρηθεί και ως η δυσκαμψία του υλικού ή η αντίστασή του σε ελαστική παραμόρφωση. Όσο μεγαλύτερο είναι το E τόσο πιο δύσκαμπτο είναι το υλικό ή αλλιώς τόσο μικρότερη είναι η ελαστική παραμόρφωση που προκύπτει από την εφαρμογή μιας τάσης. Ως αντοχή των πλαστικών πολυμερών εκλαμβάνεται συνήθως η αντοχή στον εφελκυσμό. Στις περισσότερες εφαρμογές αυτό που μας ενδιαφέρει είναι ο σχεδιασμός να γίνεται με τέτοιο τρόπο ώστε να εξασφαλίζεται το γεγονός ότι θα προκύψουν μόνο ελαστικές παραμορφώσεις.

Γενικά, το μέτρο ελαστικότητας των πολυμερών μειώνεται με την αύξηση της θερμοκρασίας, εκτός από τα ελαστομερή που συμβαίνει το αντίθετο, αφού η ελαστικότητά τους είναι εντροπική. Το μέτρο ελαστικότητας E στα πολυμερή είναι αρκετά μικρότερο από αυτό των μετάλλων και αυτό οφείλεται στους δευτερεύοντες συνθήκες δεσμούς μεταξύ των αλυσίδων. Αντίθετα με τα μετάλλα και τα κεραμικά, το E στα πολυμερή εξαρτάται από το χρόνο επιβολής του φορτίου (χωδοελαστικότητα). Το μέτρο ελαστικότητας για τα ελαστομερή μπορεί να είναι της τάξης των 7 MPa, για τα θερμοπλαστικά 1-4 GPa και για τα θερμοσκληρυνόμενα πολυμερή 1-22 GPa [6]. Οι μεγαλύτερες εφελκυστικές αντοχές στα πολυμερή είναι της τάξης των 100 MPa και η επιμήκυνση των ελαστομερών μπορεί να φτάσει και 400-500% [6, 7].
Το υλικό ελαστικότητας (GPa) είναι η αντοχή στον εφελκυσμό (MPa) η αντοχή διαρροής (MPa) και η επιμήκυνση κατά τη θραύση (%).

<table>
<thead>
<tr>
<th>ΥΛΙΚΟ</th>
<th>Μέτρο ελαστικότητας (GPa)</th>
<th>Αντοχή στον εφελκυσμό (MPa)</th>
<th>Αντοχή διαρροής (MPa)</th>
<th>Επιμήκυνση κατά τη θραύση %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>0.17-0.28</td>
<td>8.3-3.14</td>
<td>9.0-14.5</td>
<td>100-650</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.06-1.09</td>
<td>22.1-31.0</td>
<td>26.2-33.1</td>
<td>10-1200</td>
</tr>
<tr>
<td>PVC</td>
<td>2.4-4.1</td>
<td>40.7-51.7</td>
<td>40.7-44.8</td>
<td>40-80</td>
</tr>
<tr>
<td>PP</td>
<td>1.14-2.5</td>
<td>31-41.4</td>
<td>31.0-37.2</td>
<td>100-600</td>
</tr>
<tr>
<td>PS</td>
<td>2.28-3.28</td>
<td>35.9-51.7</td>
<td>-</td>
<td>1.2-2.5</td>
</tr>
<tr>
<td>PE</td>
<td>2.8-4.1</td>
<td>48.3-72.4</td>
<td>59.3</td>
<td>30-300</td>
</tr>
<tr>
<td>Nylon 6.6</td>
<td>1.58-3.8</td>
<td>75.9-94.5</td>
<td>44.8-82.8</td>
<td>15-300</td>
</tr>
</tbody>
</table>

Πίνακας 2.1 Μηχανικές ιδιότητες βασικών πολυμερών

2.6.2 Θερμοκρασία τήξης – θερμοκρασία υαλώδους μετάπτωσης

Η θερμοκρασία υαλώδους μετάπτωσης T_g αποτελεί την κρίσιμη θερμοκρασία πάνω από την οποία το πολυμερές συμπεριφέρεται όλκιμα, ενώ κάτω από αυτή συμπεριφέρεται ως ψαθυρό και εύθραυστο υλικό. Η υαλώδης μετάπτωση εμφανίζεται στα άμορφα και ημικρυσταλλικά πολυμερή. Κατά την ψύξη η θερμοκρασία υαλώδους μετάπτωσης του πολυμερούς αντιστοιχεί στο σταδιακό μετασχηματισμό του από υγρό σε ελαστόμορφο υλικό και τελικά σε άκαμπτο. Η θερμοκρασία υαλώδους μετάπτωσης αυξάνεται με την παρουσία πλευρικών ομάδων στο μόριο του πολυμερούς, και με την ύπαρξη διπλών δεσμών και αρωματικών ομάδων στις αλυσίδες. Η αύξηση του μοριακού βάρους αυξάνει τη θερμοκρασία υαλώδους μετάπτωσης. Οι δεσμοί διασταύρωσης ανεβάζουν το T_g για το λόγο ότι περιορίζουν τη μοριακή κίνηση και καθιστούν το υλικό πιο άκαμπτο.

<table>
<thead>
<tr>
<th>ΥΛΙΚΟ</th>
<th>Θερμοκρασία υαλώδους μετάπτωσης (°C)</th>
<th>Θερμοκρασία τήξης (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>-110</td>
<td>115</td>
</tr>
<tr>
<td>HDPE</td>
<td>-90</td>
<td>137</td>
</tr>
<tr>
<td>PP</td>
<td>-18</td>
<td>175</td>
</tr>
</tbody>
</table>
Πίνακας 2.2 Θερμοκρασίες υαλώδους μετάπτωσης- τήξης για τα βασικά υλικά

<table>
<thead>
<tr>
<th>Υλικό</th>
<th>Θερμοκρασία τήξης</th>
<th>Θερμοκρασία υαλώδους μετάπτωσης</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon 6.6</td>
<td>57</td>
<td>165</td>
</tr>
<tr>
<td>PET</td>
<td>69</td>
<td>265</td>
</tr>
<tr>
<td>PVC</td>
<td>87</td>
<td>212</td>
</tr>
<tr>
<td>PS</td>
<td>100</td>
<td>240</td>
</tr>
</tbody>
</table>

Ως θερμοκρασία τήξης ονομάζουμε τη θερμοκρασία κατά την οποία ένα στερεό πολυμερές με τακτική δομή μοριακών αλυσίδων μετατρέπεται σε παχύρευστο υγρό με τυχαία δομή. Η κρυσταλλικότητα επηρεάζει και τη θερμοκρασία τήξης. Όσο μεγαλύτερο βαθμό κρυστάλλωσης έχει ένα πολυμερές, τόσο περισσότερη ενέργεια απαιτείται για το διαχωρισμό των μορίων, με αποτέλεσμα να αυξάνεται η T_m. Συνεπώς, τα άμορφα πολυμερή έχουν χαμηλότερες T_m. Η θερμοκρασία στην οποία πραγματοποιείται η τήξη και η υαλώδης μετάβαση σε ένα πολυμερές προσδιορίζονται από μια γραφική παράσταση του ειδικού όγκου (το αντίστροφο της πυκνότητας) συναρτήσει της θερμοκρασίας [6]. Για το κρυσταλλικό υλικό υπάρχει μια ασυνεχής αλλαγή του ειδικού όγκου στη θερμοκρασία τήξης. Για το άμορφο υλικό η καμπύλη είναι συνεχής αλλά υφίσταται μια μικρή μείωση της κλίσης στη θερμοκρασία υαλώδους μετάπτωσης. Για τα ημικρυσταλλικά πολυμερή η συμπεριφορά είναι ενδιάμεση (Εικ.2.8).

Εικόνα 2.8 Γραφική παράσταση του ειδικού όγκου συναρτήσει της θερμοκρασίας κατά την ψύξη.
Ο ρυθμός ψύξης καθορίζει και το βαθμό κρυσταλλικότητας του πολυμερούς. Στα άμορφα πολυμερή το υλικό δεν προλαβαίνει να κρυσταλλωθεί κατά την ψύξη και μένει σε άμορφη κατάσταση, με αποτέλεσμα να παρατηρείται μεταβολή στο ρυθμό μείωσης του ειδικού όγκου του υλικού. Στα κρυσταλλικά, αντίθετα, στη θερμοκρασία τήξης παρατηρείται αλλαγή φάσης από άμορφο σε κρυσταλλικό καθώς το υλικό προλαβαίνει να σχηματίζει περιοδικό δομή. Στα ημικρυσταλλικά παρατηρείται μερική κρυστάλλωση στο σημείο τήξης. Αν το υλικό κρυσταλλωθεί παρατηρείται ασυνέχεια στο μοριακό όγκο κατά τη θερμοκρασία τήξης \(T_m \). Αν δεν συμβεί κρυστάλλωση ο ρυθμός μείωσης όγκου-θερμοκρασίας δεν αλλάζει στη θερμοκρασία τήξης και \(T_m \). Κάτω από την θερμοκρασία υαλόδους μετάπτωσης το υλικό παρουσιάζει μηχανικές ιδιότητες στερεού παρά υγρού που ψύχεται. Μερικά υλικά κρυσταλλώνονται μερικάς στην θερμοκρασία τήξης και η συμπεριφορά αυτή απεικονίζεται από την καμπύλη \(c \). Μόνο οι απλές πολυμερικές μοριακές αλυσίδες κρυσταλλώνονται αύξοντα [6]. Σε θερμοκρασίες μικρότερες του \(T_g \) ένα πολυμερές μπορεί να βρίσκεται σε ημικρυσταλλική μορφή όπου οι κρυσταλλικές περιοχές βρίσκονται σε ισορροπία με \(T_m \) ή σε καθαρά άμορφη, υαλόδη κατάσταση. Σε θερμοκρασίες μεγαλύτερες του \(T_g \) οι άμορφες περιοχές είναι σε ρευστή κατάσταση [9]. Η θερμοκρασία τήξης και υαλόδους μετάπτωσης καθορίζουν αντίστοιχα το ανώτερο και κατώτερο θερμοκρασιακό όριο για τις κατεργασίες των πολυμερών.

2.7 Σύνθετα υλικά (πολυμερούς μήτρας)

Ως σύνθετο υλικό θεωρείται κάθε πολυφασικό υλικό το οποίο επιδεικνύει ένα μεγάλο ποσοστό από τις ιδιότητες των επιμέρους φάσεων, ούτως ώστε να επιτυγχάνεται καλύτερης συνδυασμός των ιδιοτήτων τους (Αρχή της συνδυασμένης δράσης). Τα σύνθετα υλικά κατασκευάζονται με μηχανικό τρόπο και αποτελούνται από δύο ή περισσότερα υλικά με διαφορετικές φυσικές και μηχανικές ιδιότητες και τα οποία παραμένουν διακριτά σε μακροσκοπικό αλλά και μικροσκοπικό επίπεδο (νανοσύνθετα) [10].

Τα σύνθετα αποτελούνται από δύο φάσεις: τη μήτρα, η οποία είναι συνεχής και περιβάλλει την άλλη φάση, η οποία ονομάζεται διεσπαρμένη φάση. Χωρίζονται σε
τρεις κατηγορίες: στα σύνθετα με ενίσχυση κόκκων, τα σύνθετα με ενίσχυση ινών και στα πολύστρωτα σύνθετα υλικά ή σύνθετα τύπου σάντουιτς (Εικ.2.9). Η ενίσχυση ινών χωρίζεται σε συνεχή (ευθυγραμμισμένες ίνες) και σε ασυνεχή (κοντές ίνες). Μεγάλος αριθμός σύνθετων υλικών απαντάται στη φύση. Τα οστά για παράδειγμα είναι σύνθετα της ανθεκτικής και μαλακής πρωτεΐνης κολλαγόνου ως ενίσχυση και του σκληρού οστού και εύθραυστου απατίτη ως μητρική φάση.

Εικόνα 2.9 Σχέδια ταξινόμησης των σύνθετων υλικών

Τα ινώδη σύνθετα χαρακτηρίζονται για την υψηλή αντοχή και δυσκαμψία τους. Ινώδη σύνθετα υλικά με υψηλή αντοχή και μέτρο ελαστικότητας παράγονται με τη χρήση ινών χαμηλής πυκνότητας και μήτρας. Όταν η κατανομή των ινών είναι ομοιόμορφη, οι ιδιότητες είναι συνολικά καλύτερες. Όταν η τάση εφαρμόζεται κατά τη διεύθυνση των ινών, η αντοχή του σύνθετου είναι μεγάλη [11]. Όταν η τάση εφαρμόζεται κάθετα στη διεύθυνση των ινών, η αντοχή του σύνθετου δεν είναι η επιθυμητή. Σύμφωνα με τον νόμο μιγμάτων για τα σύνθετα με ενίσχυση ινών (συνεχών και ευθυγραμμισμένων) [7], το μέγιστο μέτρο ελαστικότητας ενός σύνθετου υλικού δίνεται από τη σχέση:

\[
E_c = E_m V_m + E_f V_f
\]

\[
E_c = E_m (1-V_f) + E_f V_f
\]
όπου \(E_c \) είναι το μέτρο ελαστικότητας του σύνθετου, \(E_m \) της μήτρας και \(E_f \) των ινών και \(V_m \) και \(V_f \) οι κατ’ όγκο αναλογίες για τη μήτρα και τις ινές αντίστοιχα (\(V_m + V_f = 1 \)).

Τα υλικά τα οποία χρησιμοποιούνται για ινές ενίσχυσης έχουν μεγάλες εφελκυστικές αντοχές. Τα ινόδη υλικά είναι κυρίως πολυμερή ή κεραμικά. Η μητρική φάση των ινοδών σύνθετων υλικών μπορεί να είναι μεταλλική, πολυμερική ή κεραμική. Η μήτρα συνδέει τις ινές μεταξύ τους και ενεργεί σαν το μέσο μέσα από το οποίο η εφαρμοζόμενη τάση μεταφέρεται στις ινές. Τα σύνθετα πολυμερούς μήτρας αποτελούνται από μία πολυμερική ρητίνη ως μήτρα και ινές ως μέσο ενίσχυσης. Τα υαλονήματα (fiberglass) είναι ένα παράδειγμα σύνθετου σύνθετου από ινές γυαλιού σε πολυμερή μήτρα και παράγονται σε μεγάλες ποσότητες. Οι ινές γυαλιού είναι ο συνηθέστερος τύπος ινάς που χρησιμοποιείται σαν ενισχυτικό των πλαστικών γιατί προσφέρουν έναν καλό συνδυασμό αντοχής, ακαμψίας και κόστους [11]. Εφαρμογή των υαλονημάτων συναντάμε σε σκελετούς αυτοκινήτων και πλοίων, σε πλαστικούς σωλήνες, σε υαλωμένες δάπεδα και σε βιομηχανικές μεταφορές για ελάττωση του βάρους και εξοικονόμηση στα καύσιμα [7]. Οι πιο συνηθισμένες πολυμερείς ρητίνες ινές γυαλιού είναι οι πολυεστέρες και οι βινυλεστέρες. Ως προς την πρόσφιση στο σύνθετο με υαλονήματα, οι ινές γυαλιού είναι ανάγλυφες ενώ η μήτρα (δηλ. η ρητίνη) είναι οργανική και επομένως οι δύο αυτές συνιστώσες δεν αναπτύσσουν δεσμούς μεταξύ τους, εκτός και αν η επιφάνεια καλυφθεί με κατάλληλο επικαλυπτικό [11].

2.7.1 Αφρώδη

Πολλά πλαστικά μπορούν να πάρουν τη μορφή αφρού αφού τους προσθέσουμε ειδικά διογκωτικά πρόσθετα κατά τη φάση της μορφοποίησής τους. Τα αφρώδη πολυμερή (foams) μπορούν να θεωρηθούν ως σύνθετα υλικά. Συνήθως πρόκειται για κυψελοειδή σκελετό πολυμερούς στον οποίο βρίσκονται εγκλωβισμένες φυσαλίδες αερίου, κυρίως CO₂ ή αέρα [6]. Τα αφρώδη πολυμερή βρίσκονται στη φύση σε αφθονία και έχουν σπογγώδη μορφή. Χαρακτηριστικά παραδείγματα αφρωδών φυσικών πολυμερών είναι το ξύλο, ο φελλός, το κοράλλι. Διαφέρουν στο γεγονός ότι η φαινόμενη πυκνότητα τους διαφέρει από την πυκνότητα που θα είχαν αν ήταν
συμπαγή. Στα αφρόδη πολυμερή η ελαστική παραμόρφωση οφείλεται στη μικροδομή του πολυμερούς και όχι στο ίδιο το υλικό. Συγκεκριμένα, λυγίζουν τα τοιχώματα των κυψελών και δεν εκτείνονται οι δεσμοί van der Waals. Τα αφρόδη πολυμερή παρουσιάζουν υψηλή ειδική αντοχή (λόγος αντοχής προς βάρος), καλή συμπεριφορά στη θέλει ενώ κατά την κρούση έχουν την ικανότητα να απορροφούν μεγάλα ποσοστά ενέργειας. Χρησιμοποιούνται συχνά ως μονωτικά [11].

2.8 Τεχνικές μορφοποίησης

Η διαδικασία παραγωγής πλαστικών προϊόντων περιλαμβάνει τρεις φάσεις: την παραγωγή του πολυμερούς από μονομερή, την ανάμειξή του με πρόσθετα για βελτίωση των ιδιοτήτων του και την τελική μορφοποίησή του προϊόντος στο επιθυμητό σχήμα [6]. Η κατεργασία των πλαστικών συνήθως γίνεται σε υψηλές θερμοκρασίες και συνήθως με την εφαρμογή πίεσης. Κάποιες από τις διάφορες τεχνικές μορφοποίησης που χρησιμοποιούνται αναφέρονται παρακάτω [7].

- Χύτευση με συμπίεση και μεταφορά (compression molding)
- Χύτευση με έγχυση (injection molding)
- Εκβολή (extrusion)
- Χύτευση με εμφύσηση (blow molding)
- Κατασκευή λεπτών φύλλων (polymer foil manufacturing)
- Ινοποίηση (fiber manufacturing)

Στη χύτευση με συμπίεση διακρίνουμε δύο τμήματα καλουπιού τα οποία θερμαίνονται, το ένα όμως μόνο μετακινείται. Όταν κλείσει το καλούπι εφαρμόζεται θερμότητα και πίεση έτσι ώστε το πλαστικό να πάρει το σχήμα του καλουπιού. Η τεχνική αυτή χρησιμοποιείται στα θερμοπλαστικά και τα θερμοσκληρυνόμενα πολυμερή. Στη χύτευση με μεταφορά το υλικό αρχικά τίθεται. Στη συνέχεια μεταφέρεται στο θάλαμο του καλουπιού και η πίεση μεταδίδεται στο υλικό ομοιόμορφα μέχρι να πάρει την επιθυμητή μορφή. Στη χύτευση με έγχυση, που είναι και η πιο διαδεδομένη μέθοδος μορφοποίησης για θερμοπλαστικά πολυμερή, η ποσότητα του υλικού το οποίο είναι σε μορφή κόκκων συνήθως εισάγεται σε ένα χωνί, και από κει σε ένα κύλινδρο. Στη συνέχεια, σε ένα θάλαμο θέρμανσης το υλικό τίθεται και σχηματίζει ένα παχύρρευστο υγρό και μέσω ενός εμβόλου ωθείται στην
περιοχή του καλουπιού και δέχεται πίεση μέχρι να στερεοποιηθεί. Η ταχύτητα με την οποία παράγονται τα τεμάχια με τη μέθοδο αυτή είναι αρκετά μεγάλη. Η εκβολή είναι παρόμοια με την χύτευση έγχυσης ενός παχύρρευστου θερμοπλαστικού. Η τεχνική αυτή είναι κατάλληλη για τεμάχια με σταθερή γεωμετρία όπως σωλήνες, ράβδους, μεμβράνες και νήματα. Η χύτευση με εμφύσηση είναι κατάλληλη μέθοδος κατασκευής πλαστικών φιαλών και προϊόντων με κοιλότητες [6]. Κατά τη χύτευση με εμφύσηση το πολυμερές τοποθετείται σε ένα καλούπι δύο κομματιών το οποίο έχει το επιθυμητό σχήμα. Το κοίλο μέρος δημιουργείται με την εμφύσηση αέρα υπό πίεση ο οποίος υποχρεώνει τα τοιχώματα του σωλήνα να ακολουθήσουν το περίγραμμα του καλουπιού. Με χύτευση μπορούν να μορφοποιηθούν τόσο τα θερμοπλαστικά όσο και τα θερμοσκληρυνόμενα πλαστικά.

2.9 Εφαρμογές

Τα πλαστικά υλικά χρησιμοποιούνται σε κάθε τομέα της καθημερινότητας του ανθρώπου, σε πλήθος εφαρμογών που ποικίλει από φθηνές εφαρμογές μιας χρήσης μέχρι εφαρμογές προηγμένων πολυμερικών υλικών σε τομείς όπως η αεροναυπηγική και η αυτοκινητοβιομηχανία. Ενδεικτικά κάποιες εφαρμογές πολυμερών αναφέρονται παρακάτω [7]:

- Συγκολλητικές ύλες
- Συσκευασίες
- Είδη οικιακής χρήσης
- Πλαστικά χρώματα
- Υγροί κρύσταλλοι
- Ρούχα
- Υλικά χαμηλού συντελεστή τριβής (Teflon)
- Λάστιχα
- Συνθετικά λίπη και έλαια

2.10 Διάσπαση πολυμερών

Τα πολυμερικά προϊόντα συσχετίζονται με το περιβάλλον με την έννοια της επιβαρύνσεως του περιβάλλοντος τόσο από τη διαδικασία παραγωγής τους όσο και
από τα απορρίμματα μετά τη χρησιμοποίηση του πλαστικού προϊόντος. Η απαλλαγή
tου περιβάλλοντος από τα πολυμερή συχνά βασίζεται σε αντιδράσεις που πρέπει να
gίνουν επί του πολυμερούς.

Ως διάσπαση ορίζεται μια μη αντιστρέψιμη διαδικασία που οδηγεί σε αλλαγή της
dομής ενός υλικού, που συνυδύεται από απώλεια των ιδιοτήτων του, όπως το
μοριακό βάρος. Η διάσπαση επηρεάζεται από τις περιβαλλοντικές συνθήκες.
Αντιδράσεις με τις οποίες ελαττώνεται ο βαθμός πολυμερισμού του πολυμερούς
ονομάζονται αποκοδομώμενες. Η αποσύνθεση ή διάσπαση των πολυμερών οδηγεί
στην καταστροφή της χημικής δομής τους και στην απώλεια των ιδιοτήτων τους.
Αυτό συμβαίνει κυρίως σε περιπτώσεις που το πολυμερό εκτίθεται για μεγάλο
χρονικό διάστημα στην επίδραση του περιβάλλοντος, ιδιαίτερα του φωτός και του
αέρα. Η αποσύνθεση μπορεί να οφείλεται σε φυσικούς, χημικούς, θερμικούς και
μικροβιακούς παράγοντες και πιο συγκεκριμένα σε παράγοντες όπως η έκθεση στο
φως και ιδιαίτερα στην υπεριώδη ακτινοβολία UV, η υγρασία, η ζέστη, το οξυγό
και άλλοι.

Η χημική αποσύνθεση των πολυμερών επέρχεται είτε με την απευθείας αντιδράση
tους με το οξυγόνο και το άζω (ατμοσφαιρική οξείδωση), είτε με την καταλυτική
δράση της ακτινοβολίας στην αντιδράση αποσύνθεσης της πολυμερικής αλυσίδας
(φωτοαποσύνθεση). Στην περίπτωση ατμοσφαιρικής οξείδωσης, η καταστροφή του
υλικού είναι ταχύτερη όταν υπάρχουν ακόρεστοι δεσμοί στην μοριακή αλυσίδα. Φαί
νει την προστασία των πολυμερών από την ηλιακή ακτινοβολία προστίθενται
σταθεροποιητές [6].

Η θερμική αποσύνθεση είναι το φαινόμενο της καταστροφής της δομής του
πολυμερούς κατά τη μορφοποίηση ή τη λειτουργία του σε υψηλές θερμοκρασίες.
Ένας από τους περιοριστικούς παράγοντες από τη χρήση των πλαστικών είναι ότι σε
υψηλές θερμοκρασίες έχουν την τάση να μαλακώνουν και να διασπάνται θερμικά.
Κατά τη θερμική διάσπαση τα συστατικά της μακρομοριακής αλυσίδας αρχίζουν να
dιαχωρίζονται και στη συνέχεια αντιδρούν μεταξύ τους, αλλάζοντας τις ιδιότητες του
υλικού. Τα αποτελέσματα της θερμικής διάσπασης είναι αλλαγές στο μοριακό βάρος,
και κάποιες αλλαγές που γίνονται οπτικά αντιληπτές όπως ψαθυρότητα, αλλαγές στο
χρώμα.
2.10.1 Βιοδιάσπαση

Η μικροβιακή διάσπαση ή βιοδιάσπαση, η οποία απασχολεί κυρίως την παρούσα εργασία, πραγματοποιείται από μικροβιακή ή ενζυματική δράση, επιλεκτικά, σε φυσικά κυρίως πολυμερή όπως η κυτταρίνη και το άμυλο για παράδειγμα, και προκαλεί σταδιακή μείωση του μεγέθους του μορίου του πολυμερούς έως την πλήρη μετατροπή του σε συστατικά όπως το διοξείδιο του άνθρακα και το νερό. Μια κοινή βιοδιάσπαση πολυμερών είναι αυτή των πρωτεϊνών και των λιπιδίων κατά την πέψη για θρεπτικούς σκοπούς. Η μικροβιακή διάσπαση έχει εφαρμογές κυρίως σε πολυμερή με χαμηλό μοριακό βάρος. Τα ένζυμα προκαλούν διάσπαση των πολυμερών που αποτελούν μέρος ζωντανών οργανισμών, όπως είναι οι πρωτεΐνες. Οι μικροοργανισμοί, όπως τα βακτήρια και οι μύκητες, διασπούν τα πολυμερή επιδρώντας στα μόρια άνθρακα που αποτελούν τη ραχοκοκαλιά του πολυμερούς. Η μικροβιακή αποκοδόμηση συνεπάγεται οπτικές και μακροσκοπικές μεταβολές (όπως αδιαφάνεια, ρύπανση χρώματος, στίγματα και επιφανειακή διάβρωση) αλλά και χειροτέρευση διαφόρων ιδιοτήτων, όπως η ηλεκτρική μονωτική ικανότητα του πολυμερούς [6].
ΚΕΦΑΛΑΙΟ 3

ΕΙΣΑΓΩΓΗ ΣΤΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ

3.1 Εισαγωγή

Τα συνθετικά πολυμερή χρησιμοποιούνται σε μεγάλο βαθμό τόσο εξαιτίας των ιδιοτήτων τους, μηχανικών και θερμικών -κυρίως της ανθεκτικότητας και της αντίστασης τους στη χλωρία και εξαιτίας της χαμηλής τους τιμής. Η χρήση τους σε εφαρμογές μικρής διάρκειας, όπως συσκευασίες προϊόντων και τροφίμων (στις οποίες οφείλεται ο κύριος όγκος απορριμμάτων, σχεδόν το 1/3 του όγκου των απορριμμάτων), δημιούργησε στις μέρες μας το μεγάλο πρόβλημα της μόλυνσης του περιβάλλοντος και της έλλειψης χώρου απόρριψής τους. Από μελέτες που πραγματοποιήθηκαν έγινε γνωστό ότι στο τέλος του 20ού αιώνα η παραγωγή πλαστικών είχε φτάσει τους 130 εκατομμύρια τόνους το χρόνο. Αναλογικά, κάθε άτομο χρησιμοποιεί περίπου 100 κιλά πλαστικού το χρόνο [12]. Τα κοινά πλαστικά παραμένουν στο περιβάλλον για εκατοντάδες χρόνια εξαιτίας του γεγονότος ότι οι μικροοργανισμοί που βρίσκονται στο χώμα δεν μπορούν γενικά να διασπάσουν μια πολυμερική αλυσίδα που αποτελείται αποκλειστικά από άτομα άνθρακα και που δεν υπάρχει τη φύση. Για το λόγο αυτό ερευνώνται τρόποι αντικατάστασης των κοινών πλαστικών με νέα, καινοτόμα υλικά που έχουν την ίδια λειτουργικότητα, τα οποία θα είναι περισσότερο αποδεκτά από το περιβάλλον, όπως επιτάσσει η φιλοσοφία της αειφόρου σχεδίασης.

Τις τελευταίες δεκαετίες έχουν κάνει την εμφάνισή τους νέα πολυμερικά υλικά τα οποία διαθέτουν την ιδιότητα της διάσπασης στο περιβάλλον σε σύντομο χρονικό διάστημα. Τα λεγόμενα βιοδιασπώμενα ή βιοαποικοδομήσιμα πλαστικά (biodegradable polymers) έκαναν την εμφάνισή τους στην αγορά πριν περίπου 40 χρόνια. Υπάρχει η πεποίθηση ότι τα βιοδιασπώμενα πολυμερικά υλικά θα μειώσουν την ανάγκη για παραγωγή συνθετικών πλαστικών σε χαμηλό κόστος, δημιουργώντας θετικά αποτελέσματα τόσο περιβαλλοντικά όσο και οικονομικά [12]. Η βιοδιάσπαση
των πλαστικών δεν εξαρτάται μόνο από την πρώτη ύλη παραγωγής τους, αλλά και από τη χημική δομή τους. Για το λόγο αυτό τα βιοδιασπώμενα πλαστικά μπορεί να προέρχονται από φυσικά ή από συνθετικά πολυμερή [13]. Τα «περιβαλλοντικά διασπώμενα πολυμερή» χωρίζονται σε κατηγορίες ανάλογα με το μηχανισμό διάσπασής τους, οι οποίες είναι οι εξής:

- Βιοδιασπώμενα
- Κομποστοποιήσιμα
- Υδρο-βιοδιασπώμενα
- Φωτο-διασπώμενα
- Φωτο-βιοδιασπώμενα
- Βιοδιαβρώσιμα

Τα υδρο-βιοδιασπώμενα πολυμερή διασπώνται μέσω υδρόλυσης, είναι εκείνα που περιέχουν άμυλο ή παράγουν του σε υψηλό ποσοστό. Τα φωτο-βιοδιασπώμενα πολυμερή διασπώνται μόνο με την επίδραση ηλιακής ακτινοβολίας. Τα φωτο-βιοδιασπώμενα πολυμερή, αντιθέτως, δεν απαιτούν τη συνεχή παρουσία φωτός. Η τεχνολογία τους βασίζεται στην προσθήκη μικρής ποσότητας «διασπαστή» ο οποίος εισαγόμενος στο πλαστικό κατά τη διαδικασία παραγωγής της πρώτης ύλης αλλάζει τη συμπεριφορά του πλαστικού. Τα φωτο-βιοδιασπώμενα πλαστικά, αφού εκτεθούν για κάποιο διάστημα στον ήλιο, ακόμη και με την ταφή, θα αποκοδομηθούν με την βοήθεια βακτηρίων και μυκητών καθώς προηγούμενο α «διασπαστής» έχει διασπάσει τα μακρομόρια του πλαστικού σε άλλα μικρότερα. Τα βιοδιαβρώσιμα πολυμερή διασπώνται από φυσικούς παράγοντες, κυρίως παρουσία μικροοργανισμών, και μπορεί να περιλαμβάνει διαδικασίες όπως η διάλυση στο νερό. Τα περιβάλλοντα διάσπασης των φωτο-βιοδιασπώμενων και βιοδιαβρώσιμων πολυμερών διαφέρουν και για το λόγο αυτό δεν ανήκουν στην κατηγορία των βιοδιασπώμενων πολυμερών.

Η ανάπτυξη των βιοδιασπώμενων πολυμερών, δηλαδή των πολυμερών που προέρχονται συνήθως από ανανεώσιμες πρώτες ύλες και διασπώνται μετά την απόρριψή τους από μικροοργανισμούς που βρίσκονται στο περιβάλλον, αποτελεί μια εναλλακτική λύση στις εφαρμογές των κοινών πλαστικών, αφού έχουν παρόμοιες φυσικές και μηχανικές ιδιότητες με τα συμβατικά πλαστικά και επιπλέον δίνουν
λύση στο πρόβλημα της μόλυνσης του περιβάλλοντος, της εξοικονόμησης χώρου απόθεμας απορριμμάτων και απεξάρτησης από το πετρέλαιο. Τα βιοδιασπώμενα πολυμερή, σε αντίθεση με τα κοινά πλαστικά, διασπάνται σε συγκεκριμένο χρονικό διάστημα σε διοξείδιο του άνθρακα, νερό και βιομάζα 2 [13]. Η ανάπτυξη των καινοτόμων αυτών υλικών είναι σε εξέλιξη εδώ και αρκετά χρόνια, συνεχίζοντας να αποτελεί πηγή ενδιαφέροντος για επιστήμονες και ερευνητές. Το 2002 βρέθηκε ότι η ζήτηση των βιοδιασπώμενων υλικών αυξάνεται σε ποσοστό 30% κάθε χρόνο [14].

Προκειμένου να αποκτήσουν ευρεία αποδοχή από την αγορά, θα πρέπει να ικανοποιούν κάποιες προϋποθέσεις, όπως να συμφωνούν με τους διεθνείς κανόνες διασφάλισης ποιότητας, να διαθέτουν επιθυμητές ιδιότητες, να μορφοποιούνται με συμβατικές μεθόδους μορφοποίησης και να διατίθενται σε ανταγωνιστική τιμή. Πρακτικά, τα βιοδιασπώμενα πολυμερή δεν πρόκειται αντικαταστήσουν τα συνθετικά πλαστικά, παρά μόνο σε συγκεκριμένες εφαρμογές, κυρίως μιας χρήσης ή σύντομης διάρκειας. Αλλά για τα κοινά πλαστικά αναμένεται να παραμείνουν σε χρήση για αρκετά χρόνια ακόμη. Τη στιγμή όμως που είναι γνωστό ότι η υποβάθμιση του περιβάλλοντος εντείνεται με αυξανόμενο ρυθμό και πολλοί οργανισμοί και κράτη λαμβάνουν μέτρα (συνήθως ανεπαρκή) για τον περιορισμό της, είναι χρήσιμο και θεμιτό για τις κοινότητες να υιοθετήσουν μια στάση ζωής που θα αποσκοπεί στην «περιβαλλοντική αειφορία» χωρίς να χρειάζεται να κάνουν ριζικές περικοπές στις ευκολίες που ήδη παρέχονται από τα υπάρχοντα προϊόντα.

3.2 Η έννοια της βιοδιάσπασης

Η φύση έχει την ικανότητα να βιοδιασπά όλα όσα παράγει σε στοιχειώδεις μονάδες, έτσι ώστε οι νέοι οργανισμοί να μπορούν να σχηματιστούν από τους παλιούς. Όλες οι φυσικές πρώτες υλές επιστρέφουν στη φύση, όλα τα φυτά και τα ζώα βιοδιασπώνται, ακόμα και το καθαρό πετρέλαιο διασπάται όταν βρεθεί σε κατάλληλο περιβάλλον, νερό, αέρα και άλλων συστατικών. Από τη στιγμή όμως που οι πρώτες υλές

2 Στη συγκεκριμένη περίπτωση ως βιομάζα εννοείται η οργανική μάζα που προκύπτει μετά τη βιοδιάσπαση
μετατράπηκαν σε προϊόντα, μετασχηματίστηκαν από τη βιομηχανία σε τέτοιο βαθμό που η φύση, δηλαδή οι μικροοργανισμοί και τα ένζυμα3 που διασπούν τα φυσικά υλικά, να μην μπορεί να τις αναγνωρίσει και να τις διασπάσει. Έτσι, για παράδειγμα το πετρέλαιο στην καθαρή μορφή είναι σε θέση να διασπαστεί από τη φύση, όταν μετατρέπεται όμως σε πλαστικά προϊόντα είναι αδύνατο να διασπαστεί και γίνεται αυτί μόλυνσης του περιβάλλοντος. Τα προϊόντα αυτά αντί να γίνουν μέρος της αλυσίδας της ζωής, μολύνουν την ατμόσφαιρα, το νερό και γενικότερα τον πλανήτη, διαταράσσοντας τον κύκλο ζωής των φυσικών προϊόντων που ξεκινούν από μια συγκεκριμένη μορφή και καταλήγουν στην ίδια. Τα συνθετικά πλαστικά προϊόντα ανήκουν στην κατηγορία των προϊόντων που η φύση δεν μπορεί να βιοδιασπάσει.

Αρχικά η έννοια της βιοδιάσπασης για τα προϊόντα χρησιμοποιήθηκε λανθασμένα. Ένας λόγος για αυτό ήταν το ότι δεν υπήρχαν κανονισμοί και κατευθυντήριες γραμμές που να προσδιορίζουν με σαφήνεια τον ορισμό των βιοδιασπώμενων προϊόντων. Η σύγχυση γύρω από την έννοια είχε σαν αποτέλεσμα πολλά προϊόντα στο παρελθόν να χαρακτηρίζονταν ως βιοδιασπώμενα ενώ στην πραγματικότητα δεν ήταν. Το φύλλο των δέντρων είναι ένα χαρακτηριστικό παράδειγμα βιοδιασπώμενου προϊόντος. Δημιουργείται την άνοιξη, χρησιμοποιείται από τα φυτά το καλοκαίρι για τη φωτοσύνθεση, πέφτει στο έδαφος το φθινόπωρο και απορροφάται από τη γη για να χρησιμοποιηθεί για τη δημιουργία ενός νέου φυτού. Το παράδειγμα της φύσης είναι ξεκάθαρο, όταν πρόκειται όμως για ένα προϊόν που κατασκευάζεται από τον άνθρωπο, τα πράγματα περιπλέκονται και κάποια θέματα χρειάζονται περαιτέρω επεξήγηση.

3 Τα ένζυμα είναι προτεΐνες που επιταχυνούν χημικές αντιδράσεις. Στις ενζυματικές αντιδράσεις τα αρχικά μόρια μετατρέπονται σε μόρια διαφορετικού τύπου και αποτελούν τα προϊόντα της ενζυματικής αντιδράσης. Τα ένζυμα είναι επιλεκτικά στις αντιδράσεις τις οποίες επιταχύνουν. Οι ενζυματικές αντιδράσεις είναι εκατομμύρια φορές πιο γρήγορες από τις άλλες αντιδράσεις. Μια σημαντική λειτουργία των ενζυμών στη βιολογία είναι στο πεπτικό σύστημα των ζώων. Τα ένζυμα συνήθως αναγνωρίζουν ένα υπόστρωμα, με το οποίο αντιδρούν και προκύπτουν τα προϊόντα.
Το πρώτο θέμα που χρειάζεται επεξήγηση είναι το αν ένα υλικό είναι βιοδιασπόμενο ή όχι. Ένα άλλο θέμα που χρειάζεται εξήγηση είναι ο χρόνος που χρειάζεται ένα προϊόν για να ολοκληρώσει τη βιοδιάσπαση. Επιπλέον, χρειάζεται να καθοριστούν τα προϊόντα τα οποία προκύπτουν ως αποτέλεσμα της βιοδιάσπασης των υλικών, για το αν δηλαδή προκύπτουν τοξικά συστατικά [15]. Επίσης, τα χαρακτηριστικά του περιβάλλοντος στο οποίο βρίσκεται ένα προϊόν επηρεάζουν την ικανότητα βιοδιάσπασης.

Εικόνες 3.1,2 Δοκιμή βιοδιάσπασης σε χώμα: Μετά από απόρριψη βιοδιασπόμενου πιάτου (2006) από άμυλο στο έδαφος, παρατηρήθηκε η σταδιακή απώλεια μάζας ως την πλήρη βιοδιάσπασή του σε συστατικά απορροφήσιμα από το έδαφος. Οι φωτογραφίες δείχνουν την εξέλιξη της βιοδιάσπασης σε διάστημα 1 και 2 μηνών.

Με τον όρο «βιοδιάσπαση» εννοούμε τη διάσπαση που πραγματοποιείται μέσω βιολογικών διεργασιών, κυρίως μέσω ζυμώσεων από μικροοργανισμούς όπως τα βακτήρια και οι μύκητες, και που έχει ως αποτέλεσμα συγκεκριμένες αλλαγές στη χημική δομή του υλικού καθώς και στις μηχανικές του ιδιότητες [13]. Βιοδιασπόμενα πλαστικά ορίζονται ως τα πλαστικά των οποίων η διάσπαση προκύπτει φυσικά στη βιόσφαιρα από την ενζυματική επίδραση ζωντανών οργανισμών, δηλαδή μικροοργανισμών, μυκητίων και άλγης (Εικ.3.1,2) (ASTM D 6400-99). Τελικά προϊόντα αυτής της διαδικασίας είναι διοξείδιο του άνθρακα, νερό, ανόργανα συστατικά και βιομάζα κάτω από αερόβιες συνθήκες και υδρογονάνθρακες, μεθάνιο και βιομάζα κάτω από αναερόβιες συνθήκες. Η αερόβια διάσπαση προκύπτει παρουσία οξυγόνου ενώ η αναερόβια απουσία οξυγόνου.
Προκειμένου να θεωρείται ένα πολυμερές βιοδιασπώμενο, θα πρέπει να καθορίζεται εκ των προτέρων ο χρόνος βιοδιάσπασής του. Ο βαθμός βιοδιάσπασης μετρείται με πιστοποιημένα τεστ και υπολογίζεται από την ποσότητα του άνθρακα που προκύπτει από τη βιοδιάσπαση, ενώ η τοξικότητα των προϊόντων της βιοδιάσπασης υπολογίζεται από δοκιμές τοξικότητας που χρησιμοποιούν φυτά και ζώα ενώσης σε τοξικές υσίες [13]. Ο ρυθμός βιοδιάσπασης εξαρτάται άμεσα από τη γεωμετρία του προϊόντος, από την επιφάνειά του ανά όγκο και το πορώδες του. Για παράδειγμα, οι μεμβράνες διασπάνται γρήγορτερα από ότι τα πιάτα και οι συσκευασίες φαγητού. Όταν τα συνθετικά πολυμερή έχουν στην κύρια αλυσίδα τους μόνο άτομα άνθρακα (πολυμερή προσθήκης), δεν βιοδιασπώνται. Τα μόνα συνθετικά πολυμερή που μπορεί να βιοδιασπώνται είναι τα πολυμερή συμπύκνωσης. Τα συνθετικά πολυμερή συμπύκνωσης βιοδιασπώνται με ρυθμό που εξαρτάται από την ομάδα που περιλαμβάνουν στην αλυσίδα τους (εστέρες > αιθέρες > αμίδια), τη μορφολογία (άμορφα > κρυσταλλικά), το μοριακό βάρος (χαμηλότερο > ψηλότερο) ενώ τα υδρόφιλα βιοδιασπώνται πιο γρήγορα από τα υδρόφιλα [8].

3.3 Η έννοια της κομποστοποίησης

Η κομποστοποίηση είναι ένας πολύ άμεσος και σημαντικός τρόπος ανακύκλωσης. Με το όρο κομποστοποίηση εννοούμε τη συλλογή οργανικών αποβλήτων (φύλλα, υπολείμματα φαγητών, φρούτων, λαχανικών), τη διάσπασή τους και τη μετατροπή τους κάτω από ελεγχόμενη συνθήκη σε ενεργό οργανικό λίπασμα. Ο μηχανισμός αυτός βρίσκει εφαρμογή σε αρκετά βιοδιασπώμενα πολυμερή. Η βιοδιάσπαση παρόλα αυτά δεν ταυτίζεται με την κομποστοποίηση. Η κομποστοποίηση αποτελεί ένα ελεγχόμενο μηχανισμό αερόβιας διάσπασης των οργανικών απορριμμάτων με τρόπο φυσικό από μικροοργανισμούς στο χώμα. Τα κομποστοποιημένα πολυμερή αποτελούν υποκαταγορία των βιοδιασπώμενων πλαστικών και ορίζονται ως τα πλαστικά που βιοδιασπώνται σε περιβάλλον κομποστοποίησης με βιολογικές διαδικασίες ενώ ταυτόχρονα μετατρέπονται σε διοξείδιο του άνθρακα, νερό, ανόργανα συστατικά και βιομάζα χρονικά παράλληλα με άλλα γνωστά κομποστοποιήματα υλικά, όπως η κυτταρινή και τα οργανικά απορρίμματα, όπου ορίζεται από τον διεθνή οργανισμό πιστοποίησης ASTM [13]. Η κομποστοποίηση πραγματοποιείται σε ελεγχόμενες συνθήκες περιβάλλοντος, συγκεκριμένα σε θερμοκρασία περίπου 50-60 °C σε χρονικό διάστημα περίπου 12 εβδομάδων (3
μηνών) και εξαρτάται από το μέγεθος, το σχήμα και το πάχος του υλικού [13]. Δεν λαμβάνει χώρα σε συνθήκες υγειονομικής ταφής αλλά μόνο σε ελεγχόμενες συνθήκες, όπως στον κήπο του σπιτιού για παράδειγμα, δεν αφήνει τοξικά κατάλοιπα και ενισχύει την ποιότητα του εδάφους.

Τα πλεονεκτήματα που προκύπτουν από αυτή τη διαδικασία είναι πολλά και σημαντικά, τόσο σε προσωπικό όσο και σε συλλογικό επίπεδο. Αρκετά βιοδιασπώμενα πολυμερή έχουν την ιδιότητα να διασπώνται μέσω κομποστοποίησης. Με τον τρόπο αυτό επιτυγχάνεται σοβαρή μείωση του όγκου των απορριμμάτων σε χώρους υγειονομικής ταφής, ενώ απαλλάσσεται το περιβάλλον από επιβλαβή υλικά. Αυτόματα περιορίζεται η ατμοσφαιρική ρύπανση. Επιπλέον, κάθε νοικοκυριό διαχειρίζεται τα απορρίμματά του και συγχρόνως παράγει μια εξαιρετικής ποιότητας τροφή για τον κήπο και τις καλλιέργειές του. Το σύστημα διαχείρισης των οργανικών αποβλήτων αλλά και των υλικών που έχουν αυτή την ιδιότητα, εφαρμόζεται σε αρκετές χώρες της Ευρώπης και της Αμερικής, ενώ γίνονται προσπάθειες να υιοθετηθεί και στην Ελλάδα. Τα κομποστοποιήσιμα πολυμερή (compostable polymers) ξεχωρίζουν από το σήμα που φέρουν και που δόθηκε από τους Διεθνείς Οργανισμούς Πιστοποίησης Ποιότητας ASTM και CEN (Εικ.3.3).

Εικόνα 3.3 Σήμα κομποστοποίησης στα προϊόντα

3.4 Ιστορικά

Τα πρώτα βιοδιασπώμενα πολυμερή δημιούργηθηκαν στα εργαστήρια τη δεκαετία του 1920, την εποχή όμως εκείνη οι ιδιότητες που παρουσίαζαν, δηλαδή η σταδιακή απώλεια μηχανικών ιδιοτήτων, μοριακού βάρους και μάζας, αποτελούσαν
μειονέκτημα (Εικ.3.4). Για το λόγο αυτό δεν προχώρησε η ανάπτυξή τους εκείνη την περίοδο.

Τα βιοδιασπώμενα πολυμερή άρχισαν να προκαλούν το ενδιαφέρον της αγοράς με την κρίση πετρελαίου το 1973. Εμφανίστηκαν στην αγορά τη δεκαετία του 1960 και οι πρώτες εφαρμογές αφορούσαν στην ιατρική και συγκεκριμένα στον τομέα των εμφυτευμάτων και των βιο-απορροφήσιμων ραμμάτων και φαρμάκων [15]. Η ιδιότητά τους να βιοδιασπώνται από τον οργανισμό (in vivo) δημιούργησε τη δυνατότητα νέων εφαρμογών που πλεονεκτούσαν έναντι των ήδη γνωστών και διαδεδομένων μεθόδων. Σε άλλους τομείς πέραν της ιατρικής, η ανάγκη που έκανε επιτακτική την παραγωγή και χρήση τους ήταν το πρόβλημα της μόλυνσης του περιβάλλοντος και της έλλειψης χώρου απόθεσης των απορριμμάτων.

Στην ιατρική, το πρώτο βιοδιασπώμενο ράμμα που χρησιμοποιήθηκε ήταν το λεγόμενο «catgut», ένα φυσικό, δυνατό και λεπτό νήμα φτιαγμένο από άντερα ζώων. Το πολυγαλακτικό οξύ ή PLA άρχισε να χρησιμοποιείται σε ιατρικές εφαρμογές τη δεκαετία του 1970 όταν εγκρίθηκε για πρώτη φορά η χρήση ραμμάτων από βιοδιασπώμενα πολυμερή από την αγορά στη Βόρεια Αμερική [16]. Έχοντας ως πρώτη ύλη υλικά όπως το πολυγαλακτικό και το πολυγλυκολικό οξύ ή PGA, η νέα αυτή γενιά ραμμάτων μονοπώλησε την αγορά φτάνοντας σε ποσοστό το 95% των συνολικών πωλήσεων.
Τη δεκαετία του 1980 εταιρίες παραγωγής πλαστικών στη Βόρεια Αμερική άρχισαν να κατασκευάζουν την πρώτη γενιά βιοδιασπώμενων πολυμερών. Η πρότει γενιά βιοδιασπώμενων πλαστικών περιλάμβανε στη σύνθεσή της μια ποσότητα φυσικού πολυμερούς, άμυλο για παράδειγμα, σε ποσοστό 5-20%, σε συνδυασμό με κάποιο συνθετικό πλαστικό, PE ή PP. Τα συμβατικά πλαστικά με προσθήκες αμυλού δεν θεωρούνται βιοδιασπώμενα. Η πρότει της φυσικού πολυμερούς διασπάται από τους μικροοργανισμούς και ενώ φαινομενικά η βιοδιάσπαση έχει ολοκληρωθεί, το συνθετικό πλαστικό παραμένει σε μορφή μικρότερων τμημάτων, που όμως συνεχίζουν να ρυπαίνουν το περιβάλλον. Η βιοδιάσπαση δεν ήταν χαρακτηριστικό αυτής της γενιάς πλαστικών, αν και εσφαλμένα υιοθέτησαν αυτόν τον όρο, δημιουργώντας μια διαφορετική και όχι την πρέπουσα εικόνα για τα βιοδιασπώμενα πολυμερή. Προϊόντα που προέκυψαν από αυτή τη γενιά πλαστικών ήταν κυρίως προϊόντα μιας χρήσεως, όπως σακούλες απορριμμάτων.

Στην επόμενη γενιά βιοδιασπώμενων πολυμερών, αυξήθηκε το ποσοστό του φυσικού πολυμερούς προκειμένου να βελτιωθούν οι μηχανικές ιδιότητες του τελικού προϊόντος. Το ποσοστό του φυσικού πολυμερούς που συμμετείχε στη σύνθεση του τελικού προϊόντος έφτανε το 50-80% του συνόλου. Παρόλα αυτά το ποσοστό του συνθετικού πλαστικού παρέμενε υψηλό. Η τρίτη γενιά βιοδιασπώμενων πολυμερών δημιούργησε πραγματικά βιοδιασπώμενα πλαστικά. Προκειμένου να βελτιωθούν κάποιες ιδιότητες των πολυμερών αυτών, τα βιοδιασπώμενα πολυμερή υπόκεινται σε μετατροπές και επεξεργασίες, σύμφωνες πάντα με τους κανονισμούς καταλληλότητας [12].

3.5 Κύκλος ζωής βιοδιασπώμενων πολυμερών

Η κεντρική ιδέα των βιοδιασπώμενων πλαστικών ξεκινάει από τον κύκλο ζωής της φύσης. Ο κύκλος ζωής των βιοδιασπώμενων πολυμερών μοιάζει με τον κύκλο ζωής των φύλλων των δέντρων. Τα φυσικά βιοδιασπώμενα πολυμερή ξεκινούν από ανανεώσιμες πρώτες ύλες, φυτικές συνήθως, όπως το άμυλο, αλλά και ζωικές, όπως το κολλαγόνο και η χιτίνη. Από τις πρώτες ύλες παράγονται τα υλικά, τα οποία στη συνέχεια μετατρέπονται σε προϊόντα. Τα προϊόντα, μετά το τέλος της χρήσης τους
απορρίπτονται και συγκεντρώνονται σε χώρους κομποστοποίησης, όπου και
βιοδιασπώνται σε διοξείδιο του άνθρακα, νερό και βιομάζα. Τα συστατικά αυτά στη
συνέχεια, με τη βοήθεια της φωτοσύνθεσης, συντελούν στη δημιουργία νέων φυτών
και ο κύκλος ζωής των βιοδιασπώμενων πολυμερών συνεχίζεται (Εικ.3.5).

Εικόνα 3.5 Κύκλος ζωής βιοδιασπώμενων πολυμερών από ανανεώσιμες πρώτες ύλες

3.6 Ταξινόμηση βιοδιασπώμενων πολυμερών

Τα βιοδιασπώμενα πλαστικά ταξινομούνται σε κατηγορίες ανάλογα με τη διαδικασία
παραγωγής τους και τις πρώτες ύλες από τις οποίες προέρχονται. Οι κύριες
κατηγορίες είναι οι εξής:

• Φυσικά βιοδιασπώμενα πολυμερή
• Συνθετικά βιοδιασπώμενα πολυμερή

Τα συνθετικά βιοδιασπώμενα πολυμερή χωρίζονται στα πολυμερή που προέρχοντα
από ανανεώσιμες πρώτες ύλες και στα πολυμερή που προέρχονται από πετροχημικές
πρώτες ύλες (Εικ.3.6).
Εικόνα 3.6 Κατάταξη βιοδιασπόμενων πολυμερών

Τα βιοδιασπόμενα πολυμερή που παράγονται από τη φύση ή με φυσικές διαδικασίες κατατάσσονται στα φυσικά πολυμερή. Στα φυσικά βιοδιασπόμενα πολυμερή ανήκουν τα πολυμερή από πρωτεΐνες και πολυσακχαρίτες, όπως τα πολυμερή με βάση το άμυλο (starch-based polymers), το κολλαγόνο και τη χιτίνη, και τα πολυμερή που παράγονται από μικροοργανισμούς μέσω ξυμόσεων (PHAs). Τα συνθετικά βιοδιασπόμενα πολυμερή από ανανέωσιμες πρώτες ύλες είναι πλαστικά τα οποία παράγονται από ανανεώσιμες πρώτες ύλες (ανάλογα με τις χημικές διεργασίες). Στην κατηγορία αυτή ανήκουν πολυμερή από ανανεώσιμες πρώτες ύλες, οι οποίες παράγονται μέσω χημικής δράσης, κυρίως από υδρο-βιοδιασπόμενο PLA. Το PLA θεωρείται συνθετικό πολυμερές, εξαιτίας του γεγονότος ότι δεν βρίσκεται αυτόσιο στη φύση. Παρόλα αυτά είναι πλήρως βιοδιασπόμενο [17]. Τα συνθετικά βιοδιασπόμενα πλαστικά από πετροχημικές πρώτες ύλες παράγονται από το πετρέλαιο, έχοντας όμως την ιδιότητα του πλήρους βιοδιάσπασης. Συνθετικά βιοδιασπόμενα πλαστικά πετροχημικής προέλευσης είναι η πολυκαπρολακτόνη ή PCL, η πολυβινυλική αλκοόλη ή PVOH, οι αλειφατικοί αρωματικοί πολυεστέρες AAC και άλλα. Η PVOH αποτελεί ξεχωριστή κατηγορία υδρο-βιοδιασπόμενου πολυμερούς του οποίου η βιοδιάσπαση πραγματοποιείται σε δύο φάσεις [13]. Τα
βιοδιασπώμενα πολυμερή βρίσκουν εφαρμογή και ως σύνθετα με ενίσχυση φυσικών ινών (λινάρι, κάνναβη) για τη δημιουργία πλήρως βιοδιασπώμενων σύνθετων και αντικατάστασης των πολυμερικών μητρικών φάσεων και ινών ενίσχυσης, όπως τα υαλονήματα [12].

Ένας άλλος τρόπος κατάταξης των βιοδιασπώμενων πολυμερών είναι σε πέντε κατηγορίες ανάλογα με την προέλευσή τους. Οι κατηγορίες αυτές είναι τα πολυμερή ζωικής προέλευσης (κολλαγόνο), φυτικής προέλευσης (αμυλούχα), θαλάσσιας προέλευσης (χιτίνη), μικροβιακής προέλευσης (PLA, PHAs) και πετροχημικής προέλευσης (PCL, PVOH, AAC) [17].

3.6.1 Βιοδιασπώμενοι πολυεστέρες

Η πλειοψηφία των βιοδιασπώμενων πολυμερών ανήκουν στην κατηγορία των πολυεστέρων. Οι βιοδιασπώμενοι πολυεστέρες ανήκουν σε μια κατηγορία πολυμερών που χαρακτηρίζονται από την ύπαρξη μιας ομάδας εστέρα (RCOOR') στη μονομερική τους μονάδα (Εικ.3.8). Διακρίνουμε δύο βασικές ομάδες πολυεστέρων: τους αλειφατικούς και τους αρωματικούς. Στους αλειφατικούς πολυεστέρες τα άτομα άνθρακα ενώνονται σε ευθείες ή διακλαδωμένες αλυσίδες με ακόρεστους ή κορεσμένους δεσμούς. Οι αρωματικοί πολυεστέρες περιλαμβάνουν στην αλυσίδα τους μία ή περισσότερες ομάδες από 6 άτομα άνθρακα τα οποία σχηματίζουν τους αρωματικούς δακτυλίους (φαινίλια) (Εικ.3.7).

[Diagram image]

Εικόνα 3.7 Αρωματικός δακτύλιος

Η πλειοψηφία των βιοδιασπώμενων πολυμερών που έχουν μελετηθεί ανήκουν στην κατηγορία των αλειφατικών πολυεστέρων. Κάποιοι αλειφατικοί βιοδιασπώμενοι πολυεστέρες θεωρούνται φυσικά πολυμερή (PHAs) και κάποιοι άλλοι συνθετικά πολυμερή (PLA, PGA, PCL).
Στην εικόνα 3.9 φαίνεται ο διαχωρισμός των κυριότερων βιοδιασπώμενων πολυεστέρων σε φυσικούς, συνθετικούς από ανεξάντλητες πρώτες ύλες και συνθετικούς από πετροχημικές πρώτες ύλες.

3.7 Διεθνείς Οργανισμοί Πιστοποίησης

Όπως αναφέρθηκε παραπάνω, η έννοια της βιοδιάσπασης αρχικά χρησιμοποιήθηκε εσφαλμένα, δημιουργώντας μια αρνητική εντύπωση στην κοινή γνώμη για τα προϊόντα που ήταν κατασκευασμένα από βιοδιασπώμενα πολυμερή υλικά. Πολλά προϊόντα που είχαν χαρακτηριστεί «βιοδιασπώμενα», στην ουσία δεν ήταν. Σε μια προσπάθεια να ξεκαθαρίσει το τοπίο ανάμεσα σε αυτές τις έννοιες δημιουργήθηκαν κάποιοι κανόνες πιστοποίησης που περιγράφονταν με σαφήνεια στον ορισμό των βιοδιασπώμενων πολυμερών. Τον Ιούλιο του 2000 στις ΗΠΑ δημιουργήθηκε πρόγραμμα διασφάλισης ποιότητας βασιζόμενο στην πιστοποίηση ASTM Standard D 6400-99 για υλικά κατάλληλα για εφαρμογές βιοδιάσπασης και αποσύνθεσης, το
οποίο χρησιμοποιείται από το Συμβούλιο Βιοδιασπόμενων Προϊόντων (BPI). Το αντίστοιχο πρότυπο στην Ευρώπη για διασφάλιση ποιότητας των βιοδιασπόμενων προϊόντων είναι το CEN 13432 το οποίο δημιουργήθηκε το 2000 και αποτελεί ένα από τα πιο αυστηρά πρότυπα βιοδιάσπασης, και αναφέρεται κυρίως σε συσκευασίες [18].

Ο CEN (European Committee of Standardization) αποτελεί έναν Ευρωπαϊκό Οργανισμό διασφάλισης ποιότητας με δραστηριότητα στον τομέα των υλικών και της συσκευασίας. Παρέχει κατευθυντήριες γραμμές έτσι ώστε οι συσκευασίες που παράγονται και σχεδιάζονται να είναι σύμφωνες με τις συγκεκριμένες προδιαγραφές. Ως προς την ικανότητα βιοδιάσπασης, μια συσκευασία θα πρέπει να είναι σε θέση να υποστεί φυσική, χημική, θερμική ή βιολογική αποκατάσταση τέτοια ώστε το τελικό προϊόν να διασπάται σε CO2, νερό και βιομάζα (CEN EN13432:2000). Με το να παρέχει πρακτικές κατευθυντήριες γραμμές ως προς τις ελάχιστες απαιτήσεις που πρέπει να ακολουθούνται, ο CEN κατευθύνει τους σχεδιαστές και τους παραγωγούς στην πραγματοποίηση βελτιώσεων. Συνολικά, οι πιστοποιήσεις ποιότητας για τα Βιοδιασπόμενα Πολυμερή είναι οι εξής:

- ASTM D 6400-99 (Πιστοποίηση για κομποστοποιήσιμα πλαστικά και πλήθος άλλων πιστοποιήσεων που αναφέρονται στη βιοδιάσπαση των πολυμερών)
- CEN 13432 (2000)
- ISO 14855, 14851, 14852
- DIN V54900

Αν ένα προϊόν διαθέτει μια από τις παραπάνω πιστοποιήσεις, οι υπόλοιποι οργανισμοί αναγνωρίζουν την ποιότητα του προϊόντος [18]. Οι πιστοποιήσεις εγγυώνται ότι όχι μόνο η συσκευασία θα πρέπει να είναι πλήρως βιοδιασπόμενη και κομποστοποιήσιμη, αλλά και κάθε συστατικό του προϊόντος, όπως τα μελάνια, οι ετικέτες, ακόμα και το περιεχόμενο των βιοασπάμενων συσκευασιών. Η διαφορά μεταξύ των προτύπων τα οποία πιστοποιούν τη βιοδιάσπαση είναι το ποσοστό βιοδιάσπασης που απαιτείται να επιτευχθεί σε συγκεκριμένο χρονικό διάστημα προκειμένου ένα υλικό να θεωρείται βιοδιασπόμενο.
3.8 Περιβάλλοντα βιοδιάσπασης

Ο βαθμός βιοδιάσπασης των πολυμερών εξαρτάται από το περιβάλλον στο οποίο βρίσκονται μετά την απόρριψή τους και από τις συνθήκες που επικρατούν στο περιβάλλον αυτό. Στους χώρους απόρριψης, προκειμένου να πραγματοποιηθεί κομποστοποίηση, θα πρέπει να είναι παρόντες μικροοργανισμοί, όπως βακτήρια, η θερμοκρασία περιβάλλοντος θα πρέπει να είναι στους 20-60 °C, παρουσία οξυγόνου, υγρασίας και μεταλλικών στοιχείων, με το pH ουδέτερο προς όξινο [12]. Κάποια υλικά διασπώνται σε αερόβιο περιβάλλον (παρουσία οξυγόνου) ενώ άλλα σε αναερόβιο περιβάλλον (απουσία οξυγόνου). Στην αερόβια βιοδιάσπαση τα προϊόντα που προκύπτουν είναι νερό, διοξείδιο του άνθρακα και βιομάζα ενώ στην αναερόβια βιοδιάσπαση παράγεται επιπλέον και μεθάνιο (Εικ.3.10). Ο ρυθμός βιοδιάσπασης μετρείται με την ποσότητα του διοξειδίου του άνθρακα που αποβάλλεται σε αερόβια διάσπαση, ενώ στην περίπτωση αναερόβιας διάσπασης από το μεθάνιο και το διοξείδιο του άνθρακα που εκλύεται συνολικά. Μετά τη βιοδιάσπαση δεν πρέπει να ανιχνεύονται τοξικές ουσίες στο περιβάλλον, όπως για παράδειγμα βαρέα μέταλλα.

\[C_t = CO_2 + H_2O \]

\[C_t = CO_2 + CH_4 + H_2O \]

Εικόνα 3.10 Αερόβια-αναερόβια βιοδιάσπαση

Τα κυριότερα περιβάλλοντα στα οποία πραγματοποιείται αποκοδόμηση των βιοδιασπώμενων πολυμερών είναι τα εξής:

- Περιβάλλον κομποστοποίησης
- Περιβάλλον αναερόβιας διάσπασης
- Αποχετευτικός χώρος
- Χώροι υγειονομικής ταφής (landfills)
- Υδάτινο περιβάλλον
- Γενικά στο περιβάλλον ως ρύπος
- Στον ανθρώπινο οργανισμό (in vivo)
Γενικά, η φύση του κάθε πολυμερούς υποδεικνύει και το περιβάλλον στο οποίο μπορεί να διασπαστεί. Τα περισσότερα βιοδιασπώμενα πολυμερή βιοσυστατικά διαχωρίζονται σε περιβάλλον κομποστοποίησης. Σε πολλές πόλεις του δυτικού κόσμου πραγματοποιείται οργανωμένη κομποστοποίηση οργανικών απορριμμάτων. Ο μηχανισμός βιοδιάσπασης σε περιβάλλον κομποστοποίησης είναι αρχικά η υδρόλυση σε συνδυασμό με αερόβια και αναερόβια μικροβιακή δραστηριότητα. Για πλήρη βιοδιάσπαση, η κομποστοποίηση πραγματοποιείται σε 10 με 12 εβδομάδες, σε θερμοκρασία 50-60 °C. Προκειμένου να ξεκινήσει η κομποστοποίηση, θα πρέπει να αφαιρεθούν όλα τα μή βιοδιασπώμενα κομμάτια και να προστεθεί υγρασία. Τα προϊόντα της κομποστοποίησης βελτιώνουν την ποιότητα του εδάφους.

Στην αναερόβια διάσπαση, τα προϊόντα που προκύπτουν είναι μεθάνιο και βιομάζα. Οι αποχετευτικοί χώροι είναι κατάλληλοι για βιοδιάσπαση εξαιτίας του γεγονότος ότι υπάρχουν μικρόβια και υψηλά επίπεδα νατρίου και φωσφόρου. Κάθε βιοδιασπώμενο πολυμερές που διασπάται μέσα κομποστοποίησης, διασπάται ακόμα γρηγορότερα σε συστήματα αποχέτευσης. Στους χώρους υγειονομικής ταφής, προκειμένου να επιτευχθεί βιοδιάσπαση, είναι απαραίτητη η παρουσία συγκεκριμένων καταλυτών [13]. Τα βιοδιασπώμενα πλαστικά κατά τη βιοδιάσπασή τους ανεξάρτητα την εκπομπή μεθανίου. Στους χώρους υγειονομικής ταφής όπου το φυσικό αέριο συλλέγεται για χρήση, αυτό είναι θετικό, διαφορετικά η παρουσία βιοδιασπώμενων πολυμερών ενισχύει το φαινόμενο του θερμοκηπίου. Σε υδάτινο περιβάλλον, ο βαθμός βιοδιάσπασης εξαρτάται από τη θερμοκρασία του νερού και συνήθως είναι αρκετά βραδύτερος από ότι σε συνθήκες κομποστοποίησης. Εξαιτίας αυτής της ιδιότητας, πολλές φορές τα βιοδιασπώμενα πλαστικά στη θάλασσα αποτελούν κίνδυνο για τα θαλάσσια είδη μέχρι να διασπαστούν. Τέλος, η βιοδιάσπαση των πολυμερών δεν είναι άμεση και απαιτεί την παρουσία συγκεκριμένων μικροοργανισμών, για το λόγο αυτό πολλές φορές η βιοδιάσπαση πλαστικών ρύπων δεν είναι δυνατή και μπορεί να καθυστερήσει πολύ εξαιτίας του γεγονότος ότι οι συγκεκριμένες συνθήκες μπορεί να μην ευνοούν τη βιοδιάσπαση. Επίσης, κάποια από τα βιοδιασπώμενα πολυμερή υλικά είναι βιοσυμβατά και έχουν την ιδιότητα να βιοδιασπώνται μέσα το σώμα από τον ίδιο τον οργανισμό (in vivo).
3.9 Εφαρμογές

Αρχικά, οι εφαρμογές των βιοδιασπόμενων πολυμερών παρέμειναν περιορισμένες εξαιτίας της υψηλής τιμής τους. Σήμερα, η τιμή τους είναι ανταγωνιστική με αυτής των κοινών πλαστικών, για το λόγο αυτό οι εφαρμογές τους έχουν επεκταθεί σε αρκετούς τομείς, και μάλιστα ευρείας κατανάλωσης. Ενδεικτικά, η τιμή μίγματος αμύλου και συνθετικού βιοδιασπόμενου πολυμερούς (mater-bi) το 2006 έφτανε τα 1.25-4 ευρώ/κιλό όταν η τιμή του PET ήταν 0.5-1.25 ευρώ/κιλό. Πολλά οι εφαρμογές τους έχουν επεκταθεί σε πολλούς τομείς, και μάλιστα ευρείας κατανάλωσης. Ενδεικτικά, η τιμή μίγματος αμύλου και συνθετικού βιοδιασπόμενου πολυμερούς το 2006 έφτανε τα 1.25-4 ευρώ/κιλό όταν η τιμή του PET ήταν 0.5-1.25 ευρώ/κιλό. Γενικά, τα βιοδιασπόμενα πλαστικά είναι κατάλληλα για εφαρμογές των οποίων καλύπτουν τις απαιτήσεις ενώ επιπρόσθετα προσφέρουν περιβαλλοντικά πλεονεκτήματα, μειώνοντας τις απαιτήσεις για κατανάλωση ενέργειας και γενικά μειώνοντας τις επιπτώσεις σε περιβαλλοντικό και κοινωνικό επίπεδο, σε σχέση με άλλα πλαστικά υλικά [13].

Τα βιοδιασπόμενα πολυμέρη βρίσκουν εφαρμογή κυρίως σε τομείς όπως η ιατρική, τα γεωργικά προϊόντα, σε προϊόντα μιας χρήσης, όπως οι συσκευασίες, στην υφαντουργία και στην αυτοκινητοβιομηχανία (Εικ.3.11). Πιο αναλυτικά, η αγορά των βιοδιασπόμενων πολυμερών περιλαμβάνει:

- Ιατρικά/οδοντιατρικά εμφυτεύματα
- Μεταφορά φαρμάκου στον οργανισμό
- Αποκατάσταση ιστών
- Αγροτικά προϊόντα, μεμβράνες
- Προϊόντα φαγητού μιας χρήσης, πλαστικά ποτήρια/πιάτα, σακούλες
- Συσκευασίες τροφίμων
- Προστατευτικά αφρώδη υλικά για συσκευασίες
- Σακούλες σκουπιδιών/νοσοκομείου
- Προϊόντα προσωπικής υγείας μιας χρήσης
- Υφάσματα, ρουχισμό
- Αυτοκινητοβιομηχανία

Με την ανάπτυξη διαφόρων ειδών υλικών με διαφορετικές δομές, ιδιότητες και μηχανισμούς βιοδιάσπασης, αναπτύσσεται ένα μεγάλο εύρος πιθανών εφαρμογών. Ανάμεσα σε αυτές τις εφαρμογές περιλαμβάνονται και εφαρμογές των οποίων η
ανακύκλωση δεν είναι εφικτή, επομένως η βιοδιάσπαση είναι συμφέρουσα, όπως για παράδειγμα κάποιες συσκευασίες τροφίμων [13].

Εικόνα 3.11 Εφαρμογές βιοδιασπώμενων πολυμερών

3.10 Κυριότερες εταιρίες παραγωγής βιοδιασπωμένων υλικών και προϊόντων

Εικόνα 3.12 Εταιρίες παραγωγής βιοδιασπώμενων πολυμερών
Σχεδόν η μισή από τη συνολική παραγωγή αμύλου από το οποίο παράγεται σημαντικό ποσοστό βιοπλαστικών παγκοσμίως παράγεται στις Η.Π.Α., κυρίως από καλαμπόκι, αλλά και από άλλες πηγές αμύλου, όπως πατάτες, ζεαχαροκάλαμο και ρύζι. Αυτός είναι και ένας σημαντικός λόγος που η Αμερική γνωρίζει μεγάλη ανάπτυξη στον τομέα της παραγωγής βιοδιασπώμενων προϊόντων [18]. Πολλές εταιρίες με έδρα τη Βόρεια Αμερική διεξάγουν έρευνες εδώ και χρόνια ενώ συγχρόνως πραγματοποιείται παραγωγή προϊόντων από βιοδιασπώμενα υλικά. Επιγραμματικά αναφέρονται οι σημαντικότερες εταιρίες που δραστηριοποιούνται στο χώρο των βιοδιασπώμενων πολυμερών στο πίνακα 3.1. Στις Η.Π.Α. εδρεύει μια από τις μεγαλύτερες εταιρίες παραγωγής βιοδιασπώμενων πλαστικών, η NatureWorks, η οποία σημαντικά στήνει και οδηγεί τον αγορασκοπισμό των βιοδιασπώμενων πολυμερών. Επιπλέον, η Ιαπωνία ερευνά τη χρήση των αποθεμάτων της στο ρύζι για την παραγωγή βιοδιασπώμενων πλαστικών.

<table>
<thead>
<tr>
<th>ΕΤΑΙΡΙΕΣ</th>
<th>ΠΡΟΪΟΝΤΑ-ΔΡΑΣΤΗΡΙΟΤΗΤΑ</th>
<th>ΧΩΡΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotec</td>
<td>BIOPLAST, BIOFLEX (Υλικά συσκευασίας)</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>BIOP</td>
<td>BIOPAR® πρώτη ύλη</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>VTT</td>
<td>Colhpol (αμυλούχα προϊόντα)</td>
<td>Φινλανδία</td>
</tr>
<tr>
<td>Novamont</td>
<td>Mater-Bi (σύνθετο αμύλου)</td>
<td>Ιταλία</td>
</tr>
<tr>
<td>Plantic Technologies</td>
<td>Plantic® material (προϊόντα με βάση το άμυλο)</td>
<td>Αυστραλία</td>
</tr>
<tr>
<td>Rodenburg Biopolymers</td>
<td>Solanyl (προϊόντα με βάση το άμυλο)</td>
<td>Ολλανδία</td>
</tr>
<tr>
<td>DuPont</td>
<td>EarthShell, Biomax (συσκευασίες) Sorona (iveς)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Starch tech</td>
<td>Συσκευασίες από άμυλο</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Cereplast</td>
<td>Cereplast</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>MGPI</td>
<td>Terratek (υλικά με βάση το άμυλο)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Biostarch</td>
<td>Biostarch (μεμβράνες συσκευασίας και σακούλες από άμυλο)</td>
<td>Αυστραλία</td>
</tr>
<tr>
<td>VEGEPLAST</td>
<td>Vegemat (υλικά με βάση το άμυλο)</td>
<td>Γαλλία</td>
</tr>
<tr>
<td>PotatoPak</td>
<td>Συσκευασία τροφίμων</td>
<td>Νέα Ζηλανδία</td>
</tr>
<tr>
<td>Warner Lambert</td>
<td>Novon (άμυλο+PVOH)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>NatureWorks LLC</td>
<td>PLA</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Εταιρεία</td>
<td>Προϊόντα & Σύνθεση</td>
<td>Μέρος Ευρώπης</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FKuR</td>
<td>BioFlex, Biograde, Fibrolon (προϊόντα από PLA, μίγματα κυτταρίνης, σύνθετα με φυσικές ίνες)</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>Mitsubishi plastics</td>
<td>Ecoloju (μεμβράνες από PLA), Green Plastic (σύνθετο από ίνες μπαμπού)</td>
<td>Ιαπωνία</td>
</tr>
<tr>
<td>Hycaill</td>
<td>Παραγωγή PLA</td>
<td>Ολλανδία</td>
</tr>
<tr>
<td>Cargill- Dow</td>
<td>EcoPLA</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Natura packaging</td>
<td>Συσκευασίες από PLA</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>Monsato</td>
<td>Biopol (PHAs)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Metabolix</td>
<td>Metabolix PHA (Mirel)</td>
<td>Ηνωμένο Βασίλειο</td>
</tr>
<tr>
<td>BioMaterna</td>
<td>PHAs</td>
<td>Γαλλία</td>
</tr>
<tr>
<td>Procter and Gamble</td>
<td>Nodax (PHA)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Environmental Polymers</td>
<td>Depart (PVOH)</td>
<td>Ηνωμένο Βασίλειο</td>
</tr>
<tr>
<td>Nippon Gohsei</td>
<td>Gohlsenol (PVOH)</td>
<td>Ιαπωνία</td>
</tr>
<tr>
<td>Kuraray</td>
<td>Poval (PVOH)</td>
<td>Ιαπωνία</td>
</tr>
<tr>
<td>BASF</td>
<td>Ecoflex (υλικά για συσκευασίες από AAC, άμυλο, πολυεστέρες), Ecovio (PLA/AAC)</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>Biocorp</td>
<td>Σακούλες, είδη φαγητού μιας χρήσης</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Eastman</td>
<td>Eastar Bio (συσκευασίες)</td>
<td>Η.Π.Α.</td>
</tr>
<tr>
<td>Bayer</td>
<td>BAK παραγωγή υλικών για συσκευασίες (συνθετικοί πολυεστέρες)</td>
<td>Γερμανία</td>
</tr>
<tr>
<td>Mazda</td>
<td>Mazda Bioplastic</td>
<td>Ιαπωνία</td>
</tr>
<tr>
<td>Solvay</td>
<td>Solvay Capa (PCL), θερμοπλαστικά προϊόντα, μεμβράνες</td>
<td>Ηνωμένο Βασίλειο</td>
</tr>
<tr>
<td>Lactel</td>
<td>PLA, PGA για ιατρικές εφαρμογές</td>
<td>-</td>
</tr>
<tr>
<td>Showa</td>
<td>Bionolle (αλειφατικοί βιοδιασπόμενοι πολυεστέρες)</td>
<td>Ιαπωνία</td>
</tr>
<tr>
<td>Purac</td>
<td>Purasorb (PLA, PGA)</td>
<td>-</td>
</tr>
</tbody>
</table>

Πίνακας 3.1 Κυριότερες εταιρίες παραγωγής βιοδιασπόμενων πλαστικών

3.11 Μελλοντικές προβλέψεις

Από απολογισμό που έγινε για το έτος 2005 από το Διεθνή Οργανισμό Βιο-αποικοδομήσιμων Πλαστικών (IBAW) προέκυψαν κάποια ενδιαφέροντα συμπεράσματα. Το ενδιαφέρον του κόσμου και των εταιριών για τα βιοπλαστικά έχει αυξηθεί, γεγονός που οφείλεται στη βελτιωμένη λειτουργικότητα των
βιοδιασπώμενων πλαστικών και στην αναπτυσσόμενη αγορά. Παράλληλα, η αύξηση στο κόστος των πρώτων υλών που προέρχονται από πετρέλαιο καθώς και οι κλιματικές μεταβολές αποτελούν ανασταλτικούς παράγοντες για την περαιτέρω χρήση παραγώγων πετρελαίου για τη δημιουργία κοινών πλαστικών.

Τα βιοαποικοδομήσιμα πολυμερή αναμένεται να αντικαταστήσουν τα συνθετικά σε ποσοστό εφαρμογών 10-20% [18]. Το κόστος αναμένεται να πέσει με την αύξηση της ζήτησης, αν και ήδη έχει πέσει αρκετά με την άνοδο της τιμής του πετρελαίου. Προκειμένου να πραγματοποιηθούν οι στόχοι αυτοί θα πρέπει να γίνει κατάλληλη προώθηση τόσο από τις εταιρίες όσο και από τα κράτη μέσω της πολιτικής που εφαρμόζουν ώστε να γίνουν γνωστές στο κοινό οι εξαιρετικές ιδιότητες των υλικών αυτών (Εικ.3.13).
Εικόνα 3.13 Στατιστικά δεδομένα από έρευνα που πραγματοποιήθηκε ως προς το ενδιαφέρον του κοινού για τα βιοδιασπώμενα πλαστικά
Σύμφωνα με στοιχεία που δόθηκαν σε διάστημα ενός έτους (2005) από τον Διεθνή Οργανισμό Βιοπλαστικών IBAW [19], σημειώθηκε αύξηση στην τιμή των κοινών πλαστικών της τάξης του 30%-50%. Γενικά, η διαφορά στην τιμή μεταξύ των πλαστικών που προέρχονται από ανανεώσιμες πρώτες ύλες και των κοινών πλαστικών έχει μειωθεί αισθητά, και σε ορισμένες περιπτώσεις είναι αρνητική, όπως στην περίπτωση των φυσικών υλών έναντι των αναλογικών. Για το λόγο αυτό οι μακροπρόθεσμες προοπτικές ανάπτυξης των βιοδιασπώμενων πολυμερών είναι πολλά υποχώρησε. Συγκρόνως, η παγκόσμια παραγωγή τους αυξάνεται σε μεγάλο ποσοστό επηρείως, με το μεγαλύτερο ποσοστό να κατέχουν τα βιοπλαστικά από ανανεώσιμες πρώτες ύλες (Εικ.3.14).

Εικόνα 3.14 Παγκόσμια παραγωγή βιοπλαστικών από ανανεώσιμες και συνθετικές πρώτες ύλες

Το αυξημένο ενδιαφέρον για τη συγκεκριμένη αγορά ενισχύεται και από τις τελευταίες εξελίξεις σε τεχνολογικό και επιστημονικό επίπεδο. Σε κάποιες σημαντικές περιοχές εφαρμογών τα βιοπλαστικά έχουν καταφέρει να φτάσουν τα κοινά πλαστικά σε ποιότητα εφαρμογής. Ιδιαίτερα, ενδιαφέρον παρουσιάζουν εφαρμογές στον τομέα της ιατρικής, της συσκευασίας και της γεωργίας. Η βιομηχανία των βιοπλαστικών βρίσκεται στο ξεκίνημα μιας ανάπτυξης που θα εξαπλωθεί στις περιοχές των προϊόντων που προέρχονται από το πετρέλαιο. Οι
ανανεώσιμες πρώτες ύλες αποτελούν μια καλή λύση αφού μπορούν να αναπτυχθούν και σε χώρες που δεν διαθέτουν πηγές πετρελαίου, δεν επιβαρύνουν το περιβάλλον και δεν ενισχύουν το φαινόμενο του θερμοκηπίου με υψηλές εκπομπές διοξειδίου του άνθρακα και άλλων βλαβερών, για το περιβάλλον και τον άνθρωπο, ουσιών [19].

3.12 Μειονεκτήματα βιοδιασπώμενων πολυμερών

Τα βιοδιασπώμενα πλαστικά μπορεί να είναι μια νέα πρόταση για τον τρόπο διαχείρισης των απορριμμάτων και της επίλυσης του προβλήματος της μόλυνσης του περιβάλλοντος, η χρήση τους όμως μπορεί να εμπεριέχει σημαντικούς κινδύνους. Ένα από τα μειονεκτήματα που είναι πιθανό να δημιουργηθούν είναι το γεγονός ότι τα συστήματα διαχείρισης κομποστοποιήσμενων απορριμμάτων είναι ανεπαρκή.

Επιπλέον, τα βιοδιασπώμενα πλαστικά από μη ανανεώσιμες πρώτες ύλες συμβάλουν στην επιδείνωση του φαινομένου του θερμοκηπίου διότι μετατρέπουν τον άνθρακα των πετροχημικών πρώτων υλών σε διοξείδιο του άνθρακα στην ατμόσφαιρα κατά τη βιοδιάσπασή τους. Ακόμη, τα παραπροϊόντα από τη διάσπαση των πλαστικών, όπως χρώματα, καταλύτες, πλαστικοποιητές, εφόσον δεν είναι βιοδιασπώμενα, είναι πιθανό να μεταφερθούν στο περιβάλλον και να μολύνουν τους οργανισμούς οι οποίοι είναι εκτεθειμένοι σε αυτά [13]. Το φαινόμενο των ρύπων στο περιβάλλον είναι δύσκολο να εξαλειφθεί εξαιτίας του γεγονότος ότι και τα βιοδιασπώμενα πλαστικά χρειάζονται χρόνο για να απορροφηθούν από το περιβάλλον. Υπάρχει μάλιστα το ενδεχόμενο το φαινόμενο να ενταθεί από την πεποίθηση ότι τα βιοδιασπώμενα υλικά «εξαφανίζονται» αμέσως.

Ένα άλλο σημαντικό πρόβλημα που μπορεί να δημιουργηθεί αφορά στο θαλάσσιο υδάτα. Η μόλυνση των υδάτων με πλαστικά, βιοδιασπώμενα και μη, είναι πιθανό να οδηγήσει στο θάνατο των θαλασσιών είδων, τα οποία καταναλώνουν πλαστικά κομμάτια ως τροφή, η μόλυνση είναι σημαντικό πρόβλημα. Η μόλυνση μπορεί να ενεπαρκή και να ενισχύει την εκπομπή άνθρακα και άλλων βλαβερών θέρμοκηπίου.
περιοριστεί από τη χρήση βιοδιασπώμενων πλαστικών τα οποία όταν βρεθούν σε θαλάσσιο περιβάλλον μεταφέρονται στον πυθμένα εξαιτίας του βάρους τους. Παράλληλα, τα βιοδιασπώμενα πλαστικά από άμυλο συντελούν στον ευτροφισμό εξαιτίας της χρήσης λιπασμάτων.

Η τιμή ορισμένων βιοδιασπώμενων πλαστικών είναι ακόμα αρκετά υψηλότερη από την τιμή των συμβατικών, εξαιτίας της δαπανηρής Έρευνας και Ανάπτυξης που απαιτείται αλλά και εξαιτίας της μικρής κλίμακας παραγωγής τους. Μια άλλη ένσταση που πιθανόν να προκύψει είναι το γεγονός ότι συγκεκριμένα είδη βιοπλαστικών παράγονται μέσω γενετικά τροποποιημένων βακτηρίων και φυτών. Επίσης, υπάρχει έλλειψη πρωτοκόλλων και πιστοποιήσεων παγκόσμιας αποδοχής, που επιβραδύνει την αναγνώριση και χρήση τους από το κοινό ενώ δεν έχουν δοθεί ακόμα τα κατάλληλα κίνητρα για την προώθηση των «φιλικών» προς το περιβάλλον πλαστικών.
ΚΕΦΑΛΑΙΟ 4

ΦΥΣΙΚΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ

4.1 Εισαγωγή

Ό,τι παράγει η φύση μπορεί και να το διασπάσει. Τα φυσικά πολυμερή, δηλαδή τα πολυμερή που προέρχονται από ζωντανούς οργανισμούς, χρησιμοποιούνται από τον άνθρωπο εδώ και χιλιάδες χρόνια, αν και μέχρι τον προηγούμενο αιώνα δεν ήταν γνωστή η σύστασή τους. Τα βιοδιασπώμενα πολυμερή χωρίζονται σε δύο κατηγορίες: σε αυτά που παράγονται απευθείας από τη φύση και σε αυτά που προκύπτουν με χημική επεξεργασία και προέρχονται είτε από ανανεώσιμες είτε από μη ανανεώσιμες πρώτες ύλες. Τα φυσικά πολυμερή είναι τα πολυμερή που παράγονται από τη φύση και είναι έμμεσα είτε εμμεσά με πολυμερισμό από ανανεώσιμες πρώτες ύλες. Μπορεί να είναι φυτικής προέλευσης, όπως το ξύλο, το βαμβάκι, το μετάξι, το άμυλο, ζωικής προέλευσης, όπως η χιτίνη και το κολλαγόνο και μικροβιακής προέλευσης, όπως τα PHA. Στα φυσικά πολυμερή ανήκουν όλα τα πολυμερή που προέρχονται από ανανεώσιμες πρώτες ύλες και απαντώνται στη φύση. Παρόλα αυτά, δεν είναι όλα τα πολυμερή που παράγονται από τη φύση βιοδιασπώμενα.

Για την παραγωγή των πολυμερών από τα φυτά έχουν ερευνηθεί δύο μέθοδοι: η πρώτη βασίζεται στις ζυμώσεις4 και η δεύτερη χρησιμοποιεί τα ίδια τα φυτά ως «εργοστάσιο» παραγωγής του βιοπλαστικού. Τα πιο κοινά φυσικά πολυμερή είναι οι πολυσακχαρίτες (χιτίνη/χιτοσίνη, κυτταρίνη, άμυλο) και οι πρωτεΐνες (κολλαγόνο). Η βιοδιάσπαση των φυσικών πολυμερών εξαρτάται από την πολυπλοκότητα της δομής και τις συνθήκες που επικρατούν στο συγκεκριμένο περιβάλλον στο οποίο βρίσκονται. Τα φυσικά βιοδιασπώμενα πολυμερή που παρουσιάζουν ιδιαίτερο ερευνητικό και εμπορικό ενδιαφέρον για συγκεκριμένες εφαρμογές και τα οποία θα αναλυθούν στο παρόν κεφάλαιο είναι τα εξής:

4 Η χρήση μικροοργανισμών για τη διάσπαση οργανικών συστατικών απουσία οξυγόνου. Σήμερα οι ζυμώσεις μπορούν να πραγματοποιηθούν μέσω γενετικά τροποποιημένων μικροοργανισμών.
1. Πολυμερικά βιοϋλικά (κολλαγόνο, χιτίνη)
2. Φυσικές ίνες
3. Πολυμερή με βάση το άμυλο
4. Πολυμερή που παράγονται από μικροοργανισμούς (PHA)

4.2 Πολυμερικά βιοϋλικά

Ως πολυμερικά βιοϋλικά θεωρούνται τα πολυμερή που προέρχονται από ζωικούς οργανισμούς και που για το λόγο αυτό αλληλεπιδρούν ομαλά με ενδεχόμενο ξενιστή οργανισμό, καλύπτοντας απαιτήσεις ιατρικών εφαρμογών. Τα βιοπολυμερή αποτελούν δομικά στοιχεία των ζωτικών οργανισμών (νουκλεϊκά οξέα, πρωτεΐνες, πολυσακχαρίτες, βιολογικές μεμβράνες).

Εικόνα 4.1 Μόριο DNA

Ένα παράδειγμα βιοπολυμερούς που αποτελεί απαραίτητο συστατικό των ζωτικών οργανισμών είναι το DNA (Εικ. 4.1). Αποτελεί το μόριο της κληρονομικότητας και η μορφή του σχηματίζει μια διπλή ελικοειδή αλυσίδα. Τα μόρια του DNA έχουν πολύ μεγάλο μήκος, το μεγαλύτερο από αυτά έχει 280 εκατομμύρια μονομερή. Οι πρωτεΐνες αποτελούν ένα ακόμα παράδειγμα βιοπολυμερούς, παίζουν σημαντικό ρόλο σε όλες σχεδόν τις βιολογικές διεργασίες και η δράση τους συνδέεται με ενζυμική κατάλυση, αποθήκευση και μεταφορά πληροφορίας μεταξύ κυττάρων,
μηχανική στήριξη και άλλες διεργασίες [9]. Το catgut είναι ένα ακόμα παράδειγμα φυσικού βιοπολυμερούς. Μια ζώνη χορδής προέρχεται από έντερα ζώων και είναι ιδιαίτερα ανθεκτικό. Χρησιμοποιήθηκε ως χορδή σε μουσικά όργανα και στην ιατρική και χειρουργική ως βιοαπορροφήσιμο ράμμα.

Σε σχέση με άλλα βιοβιολικά, όπως τα μέταλλα και τα κεραμικά, τα πολυμερή έχουν το πλεονέκτημα ότι η σύνθεσή τους μπορεί να ποικίλει σε δομή και ιδιότητες. Τα βιοπολυμερή βρίσκουν εφαρμογή σε τομείς όπως τα εμφυτεύματα, η μεταφορά φαρμάκων στον οργανισμό και σε υποδομές εφαρμογές. Κύριο χαρακτηριστικό των βιοπολυμερών είναι η βιοσυμβατότητα, ενώ ορισμένα από τα φυσικά βιοπολυμερή μπορούν να χρησιμοποιηθούν σε εμπορικές εφαρμογές [20]. Τα βιοπολυμερή που θα αναλυθούν είναι το κολλαγόνο και η χιτίνη.

4.2.1 Κολλαγόνο

Το κολλαγόνο είναι η κύρια πρωτεΐνη που βρίσκεται στα θηλαστικά (καλύπτει περίπου το 25% της συνολικής πρωτεϊνικής μάζας) και είναι το συστατικό που δίνει αντοχή στους ιστούς. Ένα τυπικό μόριο κολλαγόνου αποτελείται από 3 πρωτεϊνικές αλυσίδες που σχηματίζουν ελικοειδή δομή (Εικ. 4.2). Αυτά τα μόρια οργανώνονται ώστε να σχηματίζουν ίνες κολλαγόνου ποικίλου μήκους και πυκνότητας.

Εικόνα 4.2 Μόριο κολλαγόνου
Υπάρχουν τουλάχιστον 15 είδη κολλαγόνου που διαφέρουν στη δομή και στη λειτουργία. Ο τύπος κολλαγόνου που χρησιμοποιείται στις ιατρικές εφαρμογές, βρίσκεται στο σώμα, κυρίως στο δέρμα και στα οστά [21]. Το κολλαγόνο μπορεί να αφομοιωθεί από το σώμα, είναι μια τοξικό και βιοσυμβιότο. Μπορεί να πάρει διάφορες μορφές, όπως σπογγώδη μορφή, μορφή γέλης ή φύλλου. Το κολλαγόνο αποτελείται από ίνες με πυκνότητα 1.2 g/cm³ και μέτρο ελαστικότητας περίπου 6-7 GPa. Η αντοχή στον εφελκυσμό του κολλαγόνου φτάνει τα 100 MPa [21].

4.2.2 Χιτίνη – χιτοσίνη

Η χιτίνη (C₈H₁₃O₅N)ₙ είναι ένα φυσικό πολυμερές που χρησιμοποιείται ως βιοϋλικό σε ιατρικές εφαρμογές και το οποίο βρίσκεται σε αφθονία στη φύση (είναι το δεύτερο σε αφθονία φυσικό βιοπολυμερές μετά την κυτταρίνη). Έχουν παραχθεί μίγματα χιτίνης με συνθετικά πολυμερή, όπως η πολυβινυλική αλκοόλη, αλλά και με βιοπολυμερή, όπως το κολλαγόνο [22]. Προέρχεται από ένα τύπο πολυσακχαρίτη που βρίσκεται στο κέλυφος των στρακοειδών και την εξωσκελετική θωράκιση των αρθρόποδων [23]. Βιομηχανικά παράγεται από το κέλυφος των οργανισμών με απομετάλλωση, πλύση και ξήρανση.

Η χιτίνη με επεξεργασία δίνει τη χιτοσίνη ή χιτοζάνη (chitosan) [12]. Η χιτοσίνη παράγεται εμπορικά από τη θερμική απακτώλαση της χιτίνης (Εικ. 4.3.α και 4.3.β).
Είναι από τους πιο άφθονους πολυσακχαρίτες στη φύση γι' αυτό και είναι αρκετά φθηνός. Διαθέτει ιδιότητες όπως βιοσυμβατότητα, μη τοξικότητα, εύκολη επεξεργασία, ελεγχόμενες μηχανικές ιδιότητες και ελεγχόμενη βιοδιάσπαση. Η χιτίνη και η χιτοσίνη συνεισφέρουν επίσης στην αντοχή και προστασία του οργανισμού.

Στην αρχική της μορφή η χιτίνη είναι ημιδιαφανής, εύκαμπτη, διαθέτει ελαστικότητα αλλά και ανθεκτικότητα. Στα αρθρόποδα τροποποιείται συχνά σε μια πιο σκληρή μορφή για την προστασία τους από το εξωτερικό περιβάλλον. Η χιτίνη είναι αδιάλυτη στο νερό και στην αιθυλική αλκοόλη και βιοαποικοδομείται από συγκεκριμένοι βακτήριοι. Η χιτίνη διαθέτει ιδιότητες που επιταχύνουν την επούλωση τραυμάτων στους ανθρώπους και η διάσπασή της πραγματοποιείται μέσω ενζυμικής δράσης. Η χιτοσίνη διαθέτει υδρόφιλη συμπεριφορά εξαιτίας των ομάδων υδροξυλίου, όμως η χιτίνη διασπάται πιο γρήγορα και παρουσιάζει συμβατότητα με το αίμα [23]. Η χιτοσίνη χρησιμοποιείται στην ιατρική, για την αργή απελευθέρωση φαρμάκου στον οργανισμό, και στην ορθοπεδική χειρουργική [24].

4.3 Φυσικές ίνες

Οι φυσικές ίνες και τα σύνθετα με φυσικές ίνες χρησιμοποιούνται εδώ και αιώνες εξαιτίας των μηχανικών ιδιοτήτων τους και της αφθονίας με την οποία απαντώνται στη φύση. Μετά τον Β’ Παγκόσμιο πόλεμο η παραγωγή συνθετικών ίνων μείωσε τη χρήση φυσικών ίνων. Σήμερα, με την αύξηση της τιμής του πετρελαίου και τη μόλυνση του περιβάλλοντος παρατηρείται ενίσχυση της χρήσης φυσικών ίνων και σύνθετων με ενίσχυση φυσικών ίνων, χρησιμοποιώντας πλέον τις υπάρχουσες τεχνολογίες ώστε να προκύπτει η καλύτερη δυνατή απόδοση και λειτουργικότητα του υλικού [25].

Οι φυσικές ίνες περιλαμβάνουν ίνες που παράγονται από τα φυτά, τα ζώα και από γεωλογικές διεργασίες. Οι φυτικές ίνες αποτελούνται κυρίως από μακρομόρια κυτταρίνης, ημικυτταρίνης και λιγνίνης. Στις φυτικές ίνες ανήκουν οι ίνες βαμβακιού,
λιγνίνης, η κάνναβη, το λινό, το καλάμι, το μπαμπού και άλλα. Οι ίνες κυτταρίνης χρησιμοποιούνται σε σύνθετα βιοδιασπώμενων πολυμερών για να βελτιώσουν τις μηχανικές τους ιδιότητες. Από φυτικές ίνες κατασκευάζονται υφάσματα και το χαρτί. Οι ίνες με ξοική προέλευση, όπως για παράδειγμα το κολλαγόνο, η χιτίνη, ο ιστός αράχνη, αποτελούνται κυρίως από πρωτεΐνες. Οι ίνες από καλάμι, μπαμπού, από κάνναβη και από λινό είναι συνεχείς ίνες οι οποίες διαθέτουν καλές μηχανικές ιδιότητες (υψηλό μέτρο ελαστικότητας), είναι οικονομικές και ανανεώσιμες ετησίως σε αντίθεση με ξύλο, που χρειάζεται 20-25 χρόνια για να αναπτυχθεί. Συγκεκριμένα, το μπαμπού αναπτύσσεται μέσα σε λίγους μήνες [26].

Οι φυσικές ίνες χαρακτηρίζονται για το υψηλό μέτρο ελαστικότητας και τη χαμηλή πυκνότητα. Σε κατά βάρος σύγκριση των φυσικών ίνων με συνθετικές, κάποιες φυσικές ίνες (μπαμπού, λινό, κάνναβη), έχουν μεγαλύτερο μέτρο ελαστικότητας από τα υαλονήματα. Η πυκνότητα των φυσικών ίνων παίρνει τιμές από 0.8- 1.5 kg/m³. Το μέτρο ελαστικότητας παίρνει τιμές από 30- 100 GPa περίπου. Η αντοχή στον εφελκυσμό των φυσικών ίνων βρίσκεται μεταξύ 300- 500 MPa. Οι ίνες κυτταρίνης παρουσιάζουν μέτρο ελαστικότητας, περίπου 11 GPa με πυκνότητα 1.36 kg/m³ [21].

Οι φυσικές ίνες που χρησιμοποιούνται στα σύνθετα έχουν υδρόφιλη συμπεριφορά και για το λόγο αυτό διογκώνονται με την απορρόφηση υγρασίας. Εξαιτίας της δομής τους, προσφέρουν ηχητική και θερμική μόνωση (Εικ. 4.4). Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι ίνες από καλάμι (μπαμπού, china reed). Συγκεκριμένα, οι ίνες από μπαμπού παρουσιάζουν πυκνότητα 0.8 g/cm³ και μέτρο ελαστικότητας 48-89 GPa [27].

Εικόνα 4.4 Δομή φυσικών ίνων
4.4 Βιοδιασπώμενα πολυμερή με βάση το άμυλο

4.4.1 Εισαγωγή

Ένα φυσικό πολυμερές που έχει χρησιμοποιηθεί από τη βιομηχανία των πλαστικών τα τελευταία χρόνια και έχει καλές προοπτικές στο χώρο των βιοδιασπώμενων πλαστικών είναι το άμυλο [18]. Εξαιτίας της αφθονίας του αμύλου στη φύση και του γεγονότος ότι αποτελεί μια ανανεώσιμη πρώτη ύλη, τα πλαστικά με βάση το άμυλο είναι από τα πιο διαδεδομένα στο χώρο των βιοδιασπώμενων πλαστικών, ενώ συγχρόνως αποτελούν μια οικονομική εναλλακτική λύση έναντι των κοινών πλαστικών, ενσιγκρύνοντας τη φιλοσοφία της αειφόρου σχεδίασης και ανάπτυξης. Διακρίνονται δύο βασικές κατηγορίες βιοδιασπώμενων πολυμερών από άμυλο [13]:

- Το θερμοπλαστικό άμυλο
- Τα μίγματα αμύλου με συνθετικά βιοδιασπώμενα πολυμερή (συνθετικούς αλειφατικούς πολυεστέρες, πολυβινυλική αλκοόλη)

4.4.2 Θερμοπλαστικό άμυλο

Το άμυλο χρειάζεται πρόσθετα για να μπορέσει να μορφοποιηθεί ως θερμοπλαστικό. Όταν θερμαίνεται με νερό και πλαστικοποιητή και μορφοποιείται μέσω εκβολής ή χύτευσης, μετατρέπεται σε ιξώδες υγρό. Με θέρμανση πάνω από την θερμοκρασία υαλώδους μετάτροπης το άμυλο παύει να έχει στερεά μορφή. Τα θερμοπλαστικά προϊόντα από άμυλο περιλαμβάνουν στη σύνθεσή τους άμυλο σε ποσοστό τουλάχιστον 70%. Συνήθως αναμιγνύεται με άλλα υλικά ώστε να προκύψουν οι επιθυμητές μηχανικές ιδιότητες. Τα θερμοπλαστικά πολυμερή από άμυλο μορφοποιούνται με τον ίδιο τρόπο που μορφοποιούνται και τα συνθετικά θερμοπλαστικά, μαλακώνουν με τη θέρμανση και μορφοποιούνται με εκβολή ή χύτευση, ενώ εξαιτίας των ομάδων υδροξυλίων αναμιγνύονται με άλλα μακρομόρια, σχηματίζοντας δεσμούς υδρογόνου [18].
Σύσταση

Το άμυλο παράγεται από τα φυτά κατά τη διάρκεια της φωτοσύνθεσης και λειτουργεί ως μέσο αποθήκευσης ενέργειας (υδατανθράκων). Το άμυλο είναι ένας γραμμικός πολυσακχαρίτης αποτελούμενος από επαναλαμβανόμενες μονάδες γλυκόζης. Είναι ένα ημικρυσταλλικό πολυμερές αποθηκευμένο σε κόκκους στα φυτά και αποτελείται από δύο τύπους μορίων, την αμυλόζη (20-30%) και την αμυλοπικτίνη (70-80%) [12]. Η αμυλόζη είναι γραμμικό πολυμερές (Εικ. 4.5) ενώ η αμυλοπικτίνη διακλαδωμένο (Εικ. 4.6). Και τα δύο αυτά μόρια αποτελούνται από μονάδες γλυκόζης. Στην αμυλόζη οι δεσμοί με τα άτομα οξυγόνου δημιουργούνται συνεχόμενα στην ίδια αλυσίδα ενώ στην αμυλοπικτίνη αντιστοιχεί ένα σημείο διακλάδωσης σε κάθε 20 μονομερικές μονάδες. Η αμυλόζη έχει χαμηλότερο μοριακό βάρος από την αμυλοπικτίνη (έως και 2×10⁴ μονάδες γλυκόζης), αλλά εκτεταμένη δομή, ενώ η αμυλοπικτίνη έχει μεγάλα και συμπαγή μόρια (περίπου 2×10⁶ μονάδες γλυκόζης) [28].

Εικόνα 4.5 Μόριο αμυλόζης
Γενικά, το άμυλο είναι της μορφής (C₆H₁₀O₅)ₙ (Εικ. 4.7) όπου “n” είναι ο αριθμός μονομερικών μονάδων γλυκόζης [12].

Το άμυλο έχει μορφή μικρών κόκκων και με κατάλληλη επεξεργασία μετατρέπεται σε πρώτη ύλη για πλαστικά προϊόντα. Η επεξεργασία αποσκοπεί στο να περιορίσει τον υδρόφιλο χαρακτήρα του αμύλου. Η μορφοποίηση του αμύλου σε πλαστικά προϊόντα πραγματοποιείται με τις συνήθεις μεθόδους χύτευσης και εκβολής [15].

Ιδιότητες

Τα πλαστικά με βάση το άμυλο είναι ψαθυρά σε θερμοκρασία περιβάλλοντος (Tₚ = 75-150°C). Με την προσθήκη πλαστικοποιητών η θερμοκρασία υαλόδους μετάτοσης μειώνεται και το υλικό γίνεται λιγότερο άκαμπτο στις συνήθεις
θερμοκρασίες [29]. Το μέτρο ελαστικότητας του θερμοπλαστικού αμύλου παίρνει τιμές μεταξύ 0.3-0.9 GPa, ανάλογα με το είδος και την προέλευση, ενώ με το πέρασμα του χρόνου το μέτρο ελαστικότητας αυξάνεται [29]. Το άμυλο ως πρώτη ύλη διαθέτει μειονεκτήματα όπως ο υδρόφιλος χαρακτήρας και η ψαθυρότητα, οι οποίοι αντιμετωπίζονται με την ανάμειξη του αμύλου με συνθετικά βιοδιασπώμενα πολυμερή. Με τον τρόπο αυτό προκύπτουν πολυμερή με ιδιότητες που περιορίζουν κυρίως τον υδρόφιλο χαρακτήρα του αμύλου, διατηρώντας το πλεονέκτημα της πλήρους βιοδιάσπασης.

4.4.3 Μίγματα αμύλου με συνθετικά βιοδιασπώμενα πολυμερή

Το άμυλο έχει κάποιους περιορισμούς εξαιτίας της αντοχής του σε απορροφά μεγάλες ποσότητες νερού. Για το λόγο αυτό αναμιγνύεται με συνθετικούς βιοδιασπώμενους πολυεστέρες, όπως το PCL και το PLA. Περίπου το 50% του συνθετικού πολυεστέρα μπορεί να αντικατασταθεί από άμυλο. Με τον τρόπο αυτό βελτιώνονται οι ιδιότητες εξαιτίας του πολυεστέρα και η τιμή μένει σε χαμηλό επίπεδο, εξαιτίας της χαμηλότερης τιμής του αμύλου σε σχέση με τους συνθετικούς πολυεστέρες.

Με τη μίξη αμύλου και πολυγαλακτικού οξέος βελτιώνεται η διαλυτότητα στο νερό του μίγματος, αφού το PLA είναι υδρόφοβο. Η προσθήκη αμύλου στην πολυκαπρολακτόνη (PCL) έχει σαν αποτέλεσμα τη μείωση της αντοχής στον εφελκυσμό του μίγματος, σε σχέση με το PCL, τη μείωση της αντοχής στη θραύση και του μέτρου ελαστικότητας. Το μίγμα αμύλου και PCL έχει θερμοκρασία τήξης περίπου στους 60 °C ενώ σε θερμοκρασία περίπου 40 °C αρχίζει και μαλακώνει, γεγονός που περιορίζει τις εφαρμογές του μίγματος [13].

Το άμυλο μορφοποιείται επίσης σε αφρώδες υλικό. Κατά την παραγωγή του αφρώδους υλικού, το άμυλο αναμιγνύεται με νερό και εξωθείται σε υψηλή θερμοκρασία, περίπου 150-180 °C. Το νερό στη συνέχεια αποβάλλεται και μορφοποιείται υδρόφιλος χαρακτήρας με τη βοήθεια πλαστικοποιητή και κάποιου άλλου πολυμερούς (PVOH) για βελτίωση των ιδιοτήτων του αφρώδους αμύλου. Η πολυβινυλική αλκοόλη (PVOH) αποτελεί ξεχωριστή κατηγορία υδατοδιασπώμενων βιοδιασπώμενων πολυμερών. Χαρακτηρίζεται από υψηλή υδατοδιασπότητα και όταν αναμιγνύεται με άμυλο προκύπτουν πλήρως βιοδιασπώμενα πολυμερή που
διασπόνται σε δύο φάσεις, αρχικά με υδρόλυση και στη συνέχεια με βιοδιάσπαση των μορίων σακχάρου μέσω ενζύμων [13]. Από μίγμα αμύλου και πολυβινυλικής αλκοόλης παράγεται υλικό για συσκευασίες τροφίμων που επιτυγχάνει άμεση διαλυτότητα στο νερό με την εμπορική ονομασία Mater-bi από την εταιρία Novamont [30]. Άλλα εμπορικά διαθέσιμα βιοδιασπώμενα πλαστικά με βάση το άμυλο είναι τα: Bioplast, Biopar, Sorona (για ίνες), Plastic και το Ecoflex, το οποίο αποτελεί μίγμα αμύλου και αρωματικού αλιφατικού πολυεστέρα [31]. Το άμυλο αναμιγνύεται επίσης με κεραμικά υλικά (άργιλο) για τη δημιουργία βιοδιασπώμενων μεμβρανών για τη συσκευασία τροφίμων [32].

Mater-Bi

Το Mater-Bi είναι ένα πολυμερές με βάση το άμυλο το οποίο παράγεται από την εταιρία Novamont. Προκύπτει ως μίγμα αμύλου με συνθετικά βιοδιασπώμενα πολυμερή, συνήθως PCL ή/και PVOH, σε ποσοστό 40% περίπου. Ως θερμοπλαστικό υλικό (πρώτη ύλη) παρουσιάζει πυκνότητα 1.3 g/cm³ και μέτρο ελαστικότητας 0.2-3 GPa [30]. Μορφοποιείται χρησιμοποιώντας τις συνήθεις μεθόδους χύτευσης και εκβολής και έχει δυνατότητα εκτόξευσης με κοινά μελάνια χωρίς την ανάγκη να προηγηθεί επεξεργασία. Είναι διαθέσιμο σε μορφή κόκκων και χρησιμοποιείται σε πλήθος εφαρμογών, όπως μεμβράνες με την ίδια κατεργασία που χρησιμοποιείται για την παραγωγή μεμβρανών από κοινό LDPE, θερμοσκληρυνόμενα και χρωματικά αντικείμενα, καθώς και αφρώδεις προστατευτικοί και συσκευασίες. Σε μορφή μεμβράνης παρουσιάζει διαφάνεια, σε χρώμα αντικείμενα δίνει την αίσθηση του ξύλου ενώ επιδεχόταν χρωματικούς συνδυασμούς. Το πιο γνωστό προϊόν από Mater-Bi είναι οι σακουλές BioBag. To Mater-Bi είναι πιστοποιημένο με το ευρωπαϊκό πρότυπο κομποστοποίησης και βιοδιάσπασης EN 13432 [30]. Διασπάται πλήρως σε διοξείδιο του άνθρακα, νερό και βιομάζα σε 3-6 μήνες (Εικ. 4.8).
4.4.4 Βιοδιάσπαση

Για να θεωρείται ένα θερμοπλαστικό υλικό με βάση το άμυλο βιοδιασπώμενο, το ποσοστό σε άμυλο θα πρέπει να ξεπερνά το 60%. Όσο πιο μεγάλο το ποσοστό τόσο πιο βιοδιασπώμενο θεωρείται το πολυμερές. Όταν το ποσοστό αμύλου είναι μικρότερο του 60%, το πολυμερές διασπάται σε μικρότερες μονάδες αλλά δεν φτάνει σε πλήρη βιοδιάσπαση. Η βιοδιάσπαση του αμύλου οφείλεται κυρίως στα άτομα οξυγόνου που συνδέουν τις μονομερικές μονάδες και στο άτομο οξυγόνου που βρίσκεται σε κάθε μονομερές. Η βιοδιάσπαση προκύπτει από τη δράση ενζύμων στα μόρια γλυκόζης του πολυμερούς που οδηγεί σε μείωση της αλυσίδας και αποδόμηση των μονάδων σακχάρου. Η βιοδιάσπαση του μίγματος αλιφατικού πολυεστέρα και αμύλου είναι πλήρης και πραγματοποιείται μέσα σε περίπου 4-8 εβδομάδες σε συνθήκες κομπόστησης. Σε υδατινό περιβάλλον η διάσπαση του αμύλου ολοκληρώνεται σε 20-30 εβδομάδες. Ανάλογα με τη θερμοκρασία [13].

4.5 PHA

Τα PHA (Polyhydroxyalkanoates) είναι μια ομάδα πολυεστέρων που παράγονται με φυσικό τρόπο από ένα ευρύ αριθμό οργανισμών, κυρίως βακτηρίων. Αποτελούν μέλη μιας οικογένειας γραμμικών αλειφατικών πολυεστέρων που παράγεται φυσικά από μικροοργανισμούς με πρώτες ύλες το διοξείδιο του άνθρακα και το νερό. Ανακαλύφθηκαν για πρώτη φορά το 1926 από το Γάλλο μικροβιολόγο Maurice
Lemoigne, ο οποίος συγκεκριμένα ανακάλυψε το πολύ-υδροξυβουτυρικό ή PHB, ένα από τα πιο συνήθη μέλη της οικογένειας των PHA [33]. Τα PHA περιλαμβάνουν περισσότερους από εκατό διαφορετικούς τύπους πολυμερών που μπορούν να παραχθούν από ένα μεγάλο αριθμό μονομερών [33]. Οι ιδιότητές τους ποικίλουν από άκαμπτα κρυσταλλικά υλικά, όπως το PHB, μέχρι μαλακά θερμοπλαστικά με χαμηλά σημεία τήξης [34]. Τα βιοδιασπώμενα αυτά πολυμερή παράγονται με φυσικό τρόπο, με τη βοήθεια της βιοτεχνολογίας, με δύο διαφορετικούς τρόπους: μέσω βακτηριακών ζυμώσεων και με την παραγωγή τους απευθείας στα κύτταρα των φυτών.

Στην πρώτη περίπτωση, βακτήρια συνθέτουν και συγκεντρώνουν PHA στα κύτταρά τους ως μέσο αποθήκευσης ενέργειας. Το πολυμερές συγκεντρώνεται στα κύτταρα των μικροβίων κατά τη διάρκεια της ανάπτυξης τους σε μορφή σφαιριδίων, όπως φαίνεται στην εικόνα 4.9 [13]. Στη συνέχεια με ειδική επεξεργασία αφαιρείται και μετατρέπεται σε πλαστικό. Στη δεύτερη περίπτωση, έρευνες έχουν γίνει για την παραγωγή των PHA απευθείας σε γενετικά τροποποιημένα φυτά, προκειμένου να μειωθεί το κόστος παραγωγής [35].

4.5.1 Χημική σύσταση

Η γενική δομή των PHA είναι της μορφής [-O-CHR-(CH₂)x –C=O-]ₙ. Το μήκος της αλυσίδας ποικίλει, δίνοντας έτσι μεγάλο εύρος φυσικών και μηχανικών ιδιοτήτων στα πολυμερή που προκύπτουν. Το R μπορεί να είναι υδρογόνο ή αλυσίδα υδρογονάνθρακα με μήκος C₁₃ και το x παίρνει τιμές από 1-3. Όταν το R είναι μεθυλίκο και x=1, το πολυμερές που προκύπτει είναι το PHB [34]. Το n παίρνει τιμές από 100-30000.
4.5.2 Παραγωγή των PHA

Έχοντας ως πρώτη ύλη φυτικές ουσίες, τα PHA παράγονται μέσω μικροβιακών ζυμώσεων. Η σύσταση των πολυμερών που προκύπτουν ποικίλει ανάλογα με την πρώτη ύλη, το είδος των μικροβίων που πραγματοποιούν τη ζύμωση και τις συνθήκες που επικρατούν. Με τον τρόπο αυτό παράγονται περισσότερα από συγκόντρωνοντα διαφορετικά είδη πολυμερών με ελεγχόμενα χαρακτηριστικά [34]. Περίπου τριακόσια διαφορετικά είδη βακτηριών συνθέτουν και συσσωρεύουν PHA στο εσωτερικό των κύτταρον τους ως μέρος αποθήκευσης θρεπτικών συστατικών. Στα κύτταρα συγκεντρώνονται σε μορφή διακριτών κόκκων (περίπου 8-13 κόκκοι ανά κύτταρο). Το αποθήκευτικό αυτό υλικό διασπάται με ενδοκυτταρικό απο-πολυμερισμό και μεταβολίζονται σε πηγή ενέργειας και άνθρακα [35]. Συγκεκριμένοι οργανισμοί είναι σε θέση να παράγουν PHA από σάκχαρα, ακόμα και από απορρίμματα τροφών [12]. Η ευελιξία της σύνθεσης των PHA κάνει δυνατή τη σχεδίαση και παραγωγή άκαμπτων έως πολύ ελαστικών θερμοπλαστικών βιοπολυμερών. Τα ένζυμα που παίρνουν μέρος στην παραγωγή των PHA είναι διαφορετικά από αυτά που προκαλούν τη βιοδιάσπασή τους [34]. Προκειμένου να γίνει αποτελεσματικότερη η παραγωγή των PHA, έχουν αναπτυχθεί από εταιρίες συνθήκες προσομοίωσης της βακτηριακής παραγωγής τους [35].

Μια μέθοδος παραγωγής των PHA που αποσκοπεί στη μείωση του κόστους παραγωγής τους είναι η παραγωγή τους απευθείας σε γενετικά τροποποιημένα φυτά [35]. Τα PHA είναι ακριβή όταν χρησιμοποιούνται μεμονωμένα, για το λόγο αυτό μελετάται η ανάμιξη τους με λιγότερο ακριβή πολυμερή.
4.5.3 Ιδιότητες

Τα PHA καλύπτουν ευρύ φάσμα μηχανικών ιδιοτήτων. Το παρακάτω διάγραμμα παρουσιάζει τη σχέση της αντοχής στον εφελκυσμό με την επιμήκυνση κατά τη θραύση των διαφόρων ειδών PHA σε σχέση με κοινά πλαστικά, σύμφωνα με μετρήσεις της ASTM D 638-01 (Εικ.4.11).

Εικόνα 4.11 Μηχανικές ιδιότητες PHA (η περιοχή που περικλείεται από την συνεχή καμπύλη) σε σύγκριση με αυτές κοινών πολυμερών

Με πυκνότητα περίπου 1.2 g/cm³, τα PHA παρουσιάζουν μέτρο ελαστικότητας από 0.9-3.5 GPa και αντοχή στον εφελκυσμό 10-90 MPa. Η θερμοκρασία υαλόδους μετάπτωσης κυμαίνεται μεταξύ -57-10 °C και η θερμοκρασία τήξης μεταξύ 40-180 °C (Εικ. 4.12). Ορισμένα PHA αντέχουν σε υψηλές θερμοκρασίες και για το λόγο αυτό χρησιμοποιούνται σε συσκευασίες ζεστών φαγητών και ποτών. Τα PHA είναι θερμικά ασταθή πάνω από τους 180 °C [34].
Εικόνα 4.12 Θερμικές ιδιότητες PHA (η περιοχή που περικλείεται από την συνεχή καμπύλη) σε σύγκριση με αυτές κοινών πολυμερών

PHA

Το ομοπολυμερές PHB είναι ένα σκληρό και σχετικά ψαθυρό θερμοπλαστικό υλικό. Μελετήθηκε για πρώτη φορά το 1926 στο Ινστιτούτο Pasteur στο Παρίσι. Για εμπορικές μελέτες και εφαρμογές, άρχισε να παράγεται στις Η.Π.Α. στα τέλη της δεκαετίας του 1950 και αρχές του 1960. Το PHB έχει πυκνότητα 1.25 g/cm³, μέτρο ελαστικότητας 0.9-1.2 GPa, όριο διαρροής 16-28 MPa και αντοχή στον εφελκυσμό 40 MPa [37]. Το PHB παρουσιάζει αδιαπερατότητα στο οξυγόνο και το νερό. Οι μηχανικές του ιδιότητες μοιάζουν αρκετά με αυτές του πολυπροπυλενίου (PP) και μπορεί να χρησιμοποιηθεί ως αντικαταστάτης του σε εφαρμογές (πίνακας 4.1). Σε αντίθεση με το πολυπροπυλενίο το οποίο, εξαιτίας της χαμηλής του πυκνότητας, επιπλέει στο νερό, το PHB βυθίζεται (πυκνότητα 1.25 g/cm³), γεγονός που διευκολύνει την αναερόβια διάσπασή του σε ζήμα [36]. Επιπλέον, το PHB έχει πολύ μικρότερη επιμήκυνση μέχρι τη θραύση (15%) σε σχέση με το PP. Το σημείο τήξης του στους 175 °C είναι ελάχιστα πιο χαμηλό από τη θερμοκρασία διάσπασής του στους 185 °C, γεγονός που κάνει δύσκολη τη μορφοποίησή του. Η βιοσυμβατότητά του έχει μελετηθεί και έχει αποδειχθεί ενώ είναι μη τοξικό [35].
Πίνακας 4.1 Σύγκριση του PHB με PP

<table>
<thead>
<tr>
<th>Ιδιότητες</th>
<th>PHB</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία τήξης (°C)</td>
<td>175</td>
<td>176</td>
</tr>
<tr>
<td>Θερμοκρασία υαλώδους μετάπτωσης (°C)</td>
<td>15</td>
<td>-10</td>
</tr>
<tr>
<td>Όριο διαρροής</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Μέτρο Ελαστικότητας GPa</td>
<td>0.9-1.2</td>
<td>1.7-2.5</td>
</tr>
<tr>
<td>Αντοχή στον εφελκυσμό MPa</td>
<td>40</td>
<td>34.5</td>
</tr>
<tr>
<td>Κρυστάλλικότητα (%)</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

PHBV

Στα τέλη της δεκαετίας του 1980 ξεκίνησε σε παγκόσμιο επίπεδο η παραγωγή μιας οικογένειας συμπολυμερών Poly(3HB-co-3HV) με την εμπορική ονομασία Biopol® από την εταιρία Monsanto [36]. To Biopol διασπάται σε συνθήκες κομποστοποίησης σε ένα μήνα σε διοξείδιο του άνθρακα και νερό. To ΠΗΒV είναι το πιο διαδεδομένο βιομηχανικά από τα ΠΗΑ. Η ελαστικότητα και η αντοχή του συμπολυμερού εξαρτάται από τη σύσταση του σε HV. Το μέτρο ελαστικότητάς του κυμαίνεται μεταξύ 1.4-2 GPa και η αντοχή στον εφελκυσμό μεταξύ 23-28 MPa. To PHBV διασπάται γρηγορότερα από το PHB. Μορφοποιείται με τον κοινό εξοπλισμό για πλαστικά υλικά σε μεμβράνες, φιάλες και ίνες. Γενικά για τα ΠΗΑ, σύμφωνα με προβλέψεις, η τιμή τους κατά την τρέχουσα οικονομική συγκυρία έχει πέσει αρκετά και είναι σε θέση να ανταγωνιστεί τα συνθετικά πλαστικά εξαιτίας της μαζικής παραγωγής. Συγκεκριμένα, το 2008 η τιμή των ΠΗΑ προβλέπεται να φτάσει τα 2.5 ευρώ/κιλό [37].

4.5.4 Βιοδιάσπαση

Τα ΠΗΑ προέρχονται από ανανεώσιμες πρώτες ύλες (φυτικά σάκχαρα και έλαια) δηλαδή διοξείδιο του άνθρακα, νερό και την επίδραση της ακτινοβολίας μέσω του φαινόμενου της φωτοσύνθεσης. Μετά τη βιοδιάσπαση, τα προϊόντα που μένουν είναι τα ίδια από τα οποία προήλθαν, κλείνοντας τον κύκλο ζωής τους, ο οποίος συνεχίζεται, χωρίς να αφήνει βλαβερά υπολείμματα στο περιβάλλον [34]. Δεν έχει αποδειχθεί παραγωγή τοξικών παραπροϊόντων από το PHB ή κάποιο άλλο ΠΗΑ.
Διασπώνται γενικά σε διάρκεια 10 εβδομάδων σε συνθήκες κομποστοποίησης, φτάνοντας ποσοστό 100% διάσπασης σε νερό και διοξειδίο του άνθρακα μετά από έκθεση σε μικροοργανισμούς που βρίσκονται στο περιβάλλον (χώμα, υδάτινα περιβάλλοντα). Διασπώνται κάτω από αερόβιες και αναερόβιες συνθήκες, αλλά πιο γρήγορα απο οξυγόνου (αναερόβιες συνθήκες), που σημαίνει ότι η διάσπαση είναι γρηγορότερη σε χώρους αποχέτευσης (20 ημέρες περίπου) και πιο αργή στη θάλασσα [33]. Τα PHA προσφέρουν ένα συνδυασμό βιοδιάσπασης και υδρολυτικής σταθερότητας. Η βιοδιάσπαση πραγματοποιείται μόνο μέσω ενζυματικής δράσης και όχι μέσω υδρόλυσης και πιστοποιείται με το πρότυπο EN13432 [18, 35]. Τα PHA δεν βιοδιασπώνται κάτω από φυσιολογικές συνθήκες αποθήκευσης παρά μόνο μετά από έκθεση τους σε μικροοργανισμούς (Εικ. 4.13).

Εικόνα 4.13 Βιοδιάσπαση συσκευασίας σαμπουάν από PHA
ΣΥΝΘΕΤΙΚΑ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ

5.1 Εισαγωγή

Συνθετικά βιοδιασπώμενα πολυμερή ονομάζονται τα πολυμερή που δεν απαντώνται στη φύση αλλά παράγονται με μια τεχνητή διαδικασία και βιοδιασπώνται πλήρως. Τα συνθετικά βιοδιασπώμενα πολυμερή παρέχουν πλεονεκτήματα σε σχέση με τα φυσικά βιοδιασπώμενα πολυμερή, όπως ελεγχόμενες ιδιότητες, σταθερή ποιότητα υλικού και σε ορισμένες περιπτώσεις χαμηλότερη τιμή. Τα συνθετικά βιοδιασπώμενα πλαστικά χωρίζονται σε δύο κατηγορίες: στα συνθετικά βιοδιασπώμενα πολυμερή από ανανεώσιμες πρώτες ύλες και στα συνθετικά βιοδιασπώμενα από πετροχημικές πρώτες ύλες. Ως συνθετικά βιοδιασπώμενα πολυμερή από ανανεώσιμες πρώτες ύλες ονομάζουμε τα πολυμερή που παράγονται με ένα ενζύμο το Αναντίτης πρώτες ύλες, παράγονται τεχνητά και βιοδιασπώνται πλήρως, χωρίς να επιβαρύνουν το περιβάλλον. Στην κατηγορία αυτή ανήκουν πολυεστέρες όπως το πολυγαλακτικό οξύ ή PLA και το πολυγλυκολικό οξύ ή PGA, καθώς και τα συμπολυμερή τους, όπως το PLGA. Εκτός από τα πολυμερή από ανανεώσιμες πρώτες ύλες, την ιδιότητα της βιοδιάσπασης την έχουν και πολυμερή που προέρχονται από μη ανανεώσιμες πρώτες ύλες. Τα κυριότερα συνθετικά βιοδιασπώμενα πολυμερή από μη ανανεώσιμες πρώτες ύλες είναι η πολυβινυλική αλκοόλη (PVOH ή PVA), η πολυκαπρολακτόνη (PCL) και οι αρωματικοί-αλειφατικοί πολυεστέρες (AAC) [13]. Η πολυβινυλική αλκοόλη ανήκει σε εξαφυγιστή κατηγορία υδρο-βιοδιασπώμενων πολυμερών. Ιδιαίτερη αναφορά θα γίνει στους κυρίοτερους εκπροσώπους των συνθετικών βιοδιασπώμενων πολυμερών.

5.2 Συνθετικά βιοδιασπώμενα πολυμερή από ανανεώσιμες πρώτες ύλες

5.2.1 PLA

Ίσως το πιο γνωστό και περισσότερο χρησιμοποιημένο βιοδιασπώμενο πολυμερές στον τομέα των πλαστικών είναι το πολυγαλακτικό οξύ ή PLA. Το PLA θεωρείται
συνθετικό πολυμερές γιατί δεν απαντάται στη φύση, αν και το μονομερές από το οποίο προέρχεται, το γαλακτικό οξύ, υπάρχει στη φύση και κυρίως στο άμυλο τον φυτών αλλά και στο μυικό ιστό των οργανισμών ως προϊόν μεταβολισμού της γλυκόζης [18]. Το PLA είναι βιοδιασπώμενος, αλιφατικός πολυεστέρας που προέρχεται από ανανεώσιμες πρότεις ύλες, όπως τα φυτά, και κυρίως το καλαμπόκι. Αν και δεν παράγεται άμεσα από άμυλο, θεωρείται παράγωγο του. Το PLA είναι ένα ιδιαίτερα ελκυστικό υλικό εξαιτίας της φυσικής βιοδιάσπασής του αλλά και εξαιτίας των φυσικών ιδιοτήτων του που πληροί τους οι διαφοροποιημένες προϊόντα συνθετικών πλαστικών, όπως του PET. Παρασκευάστηκε ως υλικό πριν περίπου 50 χρόνια. Αρχικά χρησιμοποιήθηκε σε ιατρικές εφαρμογές (διασπώμενα ράμματα) αλλά αργότερα οι εφαρμογές επεκτάθηκαν και σε άλλους τομείς, όπως η συσκευασία τροφίμων.

Σε γενικές γραμμές, το PLA διαθέτει χαρακτηριστικά όπως διαφάνεια παρόμοια με αυτή του PET, θερμομόνωση/ στεγανότητα, δυνατότητα εκτύπωσης με τον ήδη υπάρχοντα έξοπλισμό, κατεργασία μέσω κοινών μεθόδων μορφοποίησης (χύτευση, εκβολή και ινοποίηση) ενώ διασπάται σε διάστημα μερικών μηνών με υδρόλυση ακολουθούμενη από κομποστοποίηση [38]. Η κύρια παραγωγός εταιρεία του PLA είναι η Nature Works LLC στις Η.Π.Α. Η εταιρεία ιδρύθηκε το 1997 και αποτελεί την πρώτη εταιρεία που πρόσφερε στην αγορά πολυμερή με προέλευση εξ ολοκλήρου από ανανεώσιμες πρότεις ύλες με κόστος και λειτουργικότητα ανταγωνιστικά των πλαστικών υλικών που χρησιμοποιούνται σήμερα κυρίως στις συσκευασίες. Η αγορά πλαστικών συσκευασιών από PLA είναι αρκετά εκτεταμένη και περιλαμβάνει συσκευασίες τροφίμων, νερού και γάλακτος και η παραγωγή πραγματοποιείται από εταιρείες παγκοσμίως [38].

Χημική σύσταση

Το πολυγαλακτικό οξύ προκύπτει μέσω ζυμώσεων των σακχάρων του αμύλου τα οποία μετατρέπονται αρχικά σε γαλακτικό οξύ. Μετά την παραγωγή του γαλακτικού οξέος, με διεργασίες πολυμερισμού, παράγεται το πολυγαλακτικό οξύ ή PLA (Εικ. 5.1).
Εικόνα 5.1 Σύνθεση του PLA από γαλακτικό οξύ

Με τον πολυμερισμό του γαλακτικού οξέος δημιουργούνται τρεις μορφές πολυγαλακτικού οξέος, εξαιτίας του φαινομένου της ισομερίας, δύο οπτικά ισομερή, το L-PLA και το D-PLA και το μίγμα αυτών των δύο ισομερών, το LD-PLA. Οι L- και D μορφές δίνουν ημικρυσταλλικά στερεά πολυμερή. Το L-PLA υδρολύεται δυσκολότερα, βιοδιασπάται πιο αργά (2 χρόνια περίπου in vivo), ενώ η μορφή D- δίνει περισσότερο άμορφα στερεά και έχει περισσότερο υδρόφιλο χαρακτήρα. Για την in vivo βιοδιάσπαση προτιμάται η ισομερής μορφή L- εξαιτίας του τρόπου που μεταβολίζεται στο σώμα [19]. Ο συνδυασμός και των δύο μορφών δίνει το LD-PLA, το οποίο είναι άμορφο, διασπάται γρηγορότερα και γι' αυτό προτιμάται σε περιπτώσεις μεταφοράς φαρμάκου στον οργανισμό [18].

Συγκρότημα μορφών PLA

Το PLA παράγεται εμπορικά σε μεγάλη κλίμακα μέσω ζυμώσεων. Μικροοργανισμοί μετατρέπουν τα σάκχαρα της πρώτης ύλης, του αμύλου, που συνήθως προέρχεται από καλαμπόκι, σε γαλακτικό οξύ, μέσω βιοχημικών διεργασιών [39]. Για να γίνει κατανοητή η ποσότητα καλαμποκιού που απαιτείται για την παραγωγή του PLA, ενδεικτικά αναφέρεται ότι για την παραγωγή 1kg PLA απαιτούνται σχεδόν 2.5kg καλαμποκιού. Μικροοργανισμοί μετατρέπουν το σάκχαρο σε γαλακτικό οξύ της μορφής OCH(CH3)CO. Από το γαλακτικό οξύ παράγεται το λακτίδιο και με αφαίρεση της υγρασίας και πολυμερισμό δημιουργείται το PLA [40]. Με βιοδιάσπαση, το πολυγαλακτικό οξύ μετατρέπεται και πάλι σε γαλακτικό οξύ, ολοκληρώνοντας τον κύκλο ζωής του (Εικ.5.2).
Εικόνα 5.2 Κύκλος ζωής του PLA

Ο κύκλος ζωής του PLA περιγράφεται σχηματικά παρακάτω και αναδεικνύει την περιβαλλοντική αειφορία που προσφέρουν τα βιοδιασπώμενα πολυμερή με φυτική προέλευση (Εικ.5.3). Από το διοξείδιο του άνθρακα, το νερό και μέσω φωτοσύνθεσης αναπτύσσονται τα φυτά από τα οποία προέρχεται το γαλακτικό οξύ. Από το γαλακτικό οξύ συντίθεται το πολυγαλακτικό οξύ το οποίο στη συνέχεια γίνεται πρώτη ύλη για την παραγωγή προϊόντων. Μετά το τέλος χρήσης τους τα προϊόντα αυτά απορρίπτονται και βιοδιασπώνται στα συστατικά από τα οποία ξεκίνησαν, δηλαδή σε διοξείδιο του άνθρακα, νερό και βιομάζα, τα οποία γίνονται πρώτη ύλη για την παραγωγή των νέων προϊόντων. Το πλεονέκτημα μιας τέτοιας διαδικασίας είναι το γεγονός ότι υπάρχει ισορροπία στην ποσότητα ΣΟ2 που δεσμεύεται και που αποβάλλεται κατά την παραγωγή και διάσπαση αντίστοιχα. Έτσι το περιβάλλον δεν επιβαρύνεται σημαντικά με την επιπλέον αποβολή ΣΟ2 κατά την παραγωγή του PLA [41,42].
Ιδιότητες

Το PLA μπορεί να έχει τελείως άμορφη δομή ή να παρουσιάζει κρυσταλλικότητα έως και 50% και είναι δημοφιλές ως υλικό εξαιτίας της διαύγειας και της στιλπνότητας που το χαρακτηρίζουν [38]. Οι ιδιότητές του είναι παρόμοιες με αυτές του PET και για το λόγο αυτό είναι σε θέση να το αντικαταστήσει σε πολλές εφαρμογές, κυρίως σε μπουκάλια εμφιάλωσης νερού (Πίνακας 5.1). Είναι ελαφρώς λιγότερο διαφανές από το PET και άκαμπτο. Το PLA παρουσιάζει εξαιρετική δυνατότητα εκτύπωσης. Έχει υδρόφοβη συμπεριφορά, προσφέρει στεγαστική στην υγρασία και στις λιπαρές ουσίες των φαγητών [39]. Παρουσιάζει πυκνότητα 1.24 g/cm³. Η χαμηλότερη πυκνότητα του PLA συνεπάγεται μείωση του βάρους και του κόστους. Ως προς τις
θερμικές ιδιότητες, το PLA έχει θερμοκρασία υαλόδους μετάπτωσης T_g που κυμαίνεται μεταξύ 55-65 °C, ενώ η θερμοκρασία τήξης T_m είναι σχετικά χαμηλή και παίρνει τιμές μεταξύ 130-175 °C. Οι θερμοκρασίες τήξης και υαλόδους μετάπτωσης είναι χαμηλότερες από τα PS και PET [38], γεγονός που καθιστά ευκολότερη την θερμική μορφοποίηση του PLA. Ως προς τις μηχανικές ιδιότητες, το PLA παρουσιάζει μέτρο ελαστικότητας 2-3.2 GPa, όριο διαρροής σ_y 53-70 MPa και αντοχή στον εφελκυσμό 44-66 MPa [43].

Μια πολύ σημαντική ιδιότητα των υλικών που χρησιμοποιούνται ως συσκευασίες είναι οι τιμές διαπερατότητας οξυγόνου, διοξειδίου του άνθρακα και υδρατμών. Το PLA παρουσιάζει στεγανότητα στο νερό και τις λιπαρές ουσίες, ενώ ταυτόχρονα «διαπνέει», δηλαδή επιτρέπει σε σωματίδια υδρατμών και οξυγόνου να διαπεράσουν την επιφάνειά του. Οι ιδιότητες αυτές το καθιστούν ιδανικό υλικό για συσκευασίες τροφίμων, αφού διατηρούν το περιεχόμενο φρέσκο [14,44].

<table>
<thead>
<tr>
<th>Ιδιότητες</th>
<th>PLA</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πυκνότητα (g/cm³)</td>
<td>1.25</td>
<td>1.4</td>
</tr>
<tr>
<td>Διαφάνεια (%)</td>
<td>2.1</td>
<td>2-5</td>
</tr>
<tr>
<td>Αντοχή στον εφελκυσμό (MPa)</td>
<td>53</td>
<td>48-72</td>
</tr>
<tr>
<td>Μέτρο ελαστικότητας (GPa)</td>
<td>2-3.2</td>
<td>2.8-4.1</td>
</tr>
<tr>
<td>T_m °C</td>
<td>130-180</td>
<td>265</td>
</tr>
<tr>
<td>T_g °C</td>
<td>55-65</td>
<td>69</td>
</tr>
</tbody>
</table>

Πίνακας 5.1 Σύγκριση του PLA με PET

Παρόλα τα πλεονεκτήματα που παρουσιάζει το PLA και τις χαρακτηριστικές ιδιότητες οι οποίες είναι χρήσιμες σε πολλές εφαρμογές όπως στη συσκευασία, την ιατρική και τη γεωργία, κάποιες χαρακτηριστικά όπως η ακαμψία και η σχετικά υψηλή τιμή της περιορίζουν την χρήση του. Προκειμένου να βελτιωθούν οι ιδιότητές του ερευνάται η χρήση του ως μήτρα σύνθετου με ενίσχυση ινών. Στην περίπτωση σύνθετου από PLA με ενίσχυση από φυσικές ίνες οι μηχανικές ιδιότητες του σύνθετου κυμαίνονται στο ίδιο επίπεδο με τις ιδιότητες του σύνθετου με μήτρα από PP και ενίσχυση φυσικών ινών [45]. Η μορφοποίηση του PLA γίνεται με τις γνωστές μεθόδους χύτευσης με εμφύσηση, ινοποίηση και εκβολή σε μορφή φύλλων. Κύριες
εταιρίες παραγωγής του PLA είναι η NatureWorks LLC στις Η.Π.Α και η Mitsubishi Plastics στην Ιαπωνία.

Οι κύριες εφαρμογές του PLA ήταν αρχικά στην ιατρική τη δεκαετία του 1960 σε βιοαπορροφήσιμα ράμματα, για μεταφορά φαρμάκου στον οργανισμό, αποκατάσταση ιστών- τραυμάτων, για τη δημιουργία «πλεγμάτων» (stents) για την αποκατάσταση καρδιακών νοσημάτων και αργότερα σε χιτώνα προϊόντα για τη συσκευασία τροφίμων κυρίως, όπως μπουκάλια νερού και σε μορφή ινών (Ingeo ىνεζ) για την παραγωγή υφασμάτων, σε μορφή μεμβρανών για συσκευασίες φρέσκων τροφίμων και στον αγροτικό τομέα, σε σακούλες απορριμμάτων, σε είδη υγιεινής. Το 2006 η τιμή του PLA (Nature Works) έφτασε τα 1.8-2.4 ευρώ το κιλό [40]. Το PLA χρησιμοποιείται επίσης για την παραγωγή αναλώσιμων ειδών ηλεκτρονικών υπολογιστών, όπως ψηφιακών δίσκων. Ενδεικτικά αναφέρεται ότι χρειάζεται ένα καλαμπόκι για την παραγωγή 10 ψηφιακών δίσκων.

Βιοδιάσπαση

Το PLA διασπάται τόσο στο περιβάλλον όσο και στον οργανισμό (in vivo). Στο περιβάλλον διασπάται αρχικά μέσω υδρόλυσης της ομάδας εστέρα και στη συνέχεια παρουσιάζεται μικροοργανισμοί με κομποστοποίηση σε θερμοκρασία 60 °C σε χρονικό διάστημα 60-180 ημερών (2 με 3 μήνες) σε διοξείδιο του άνθρακα και νερό [42]. Ο βαθμός βιοδιάσπασής του εξαρτάται από το μέγεθος της μακρομοριακής αλυσίδας του και το πάχος του προϊόντος. Οι μικροοργανισμοί σε υδάτινο περιβάλλον μπορούν να το διασπάσουν σε νερό και διοξείδιο του άνθρακα μέσα σε έξι μήνες ώστε να είναι εξαιρετικά ανακυκλώσιμα. Οι μικροοργανισμοί σε υδάτινο περιβάλλον μπορούν να το διασπάσουν σε νερό και διοξείδιο του άνθρακα μέσα σε 6-18 μηνες [41]. Στο σώμα υδρόλυεται αργά εξαιτίας της υδρόφοβης συμπεριφοράς του. Ως προς τις αρχές της αειφόρου σχεδίασης, κατά την παραγωγή του το PLA καταναλώνει 30% ىος 50% λιγότερη ενέργεια από τα πολυμερή με πετροχημική προέλευση και έτσι έχουμε μείωση της αποβολής διοξείδιου του άνθρακα στο περιβάλλον [40].

5.2.2 PGA

Χημική σύσταση και σύνθεση

Το πολυγλυκολικό οξύ ή PGA είναι βιοδιασπώμενο θερμοπλαστικό πολυμερές και ο πιο απλός γραμμικός αλιφατικός πολυεστέρας (Εικ.5.4). Προκύπτει από το
γλυκολικό οξύ με πολυμερισμό, ενώ διασπάται με φυσικό τρόπο αφήνοντας τελικά προϊόντα που δεν είναι τοξικά στο περιβάλλον. Το γλυκολικό οξύ βρίσκεται στη φύση σε φυτά και πράσινα φρούτα. Το PGA είναι γνωστό από το 1954 ως πολυμερές που μορφοποιείται σε ίνες όμως εξαιτίας της υδρολυτικής αστάθειας η χρήση του αρχικά είχε περιοριστεί. Σήμερα, το PGA και τα συμπολυμερή του με PLA χρησιμοποιούνται ευρέως σαν υλικό κατασκευής βιοαπορροφήσιμων ραμμάτων και εμφυτευμάτων [17].

![PGA Structure](image)

Εικόνα 5.4 Χημική δομή του PGA

Το PGA παράγεται με διάφορες μεθόδους, όπως συμπύκνωση του γλυκολικού οξέος. Πιο αναλυτικά, το γλυκολικό οξύ θερμαίνεται σε θερμοκρασία 175-185 °C μέχρι το νερό να διαχωριστεί ώστε να προκύψει το πολυγλυκολικό οξύ. Μια άλλη και περισσότερο αποτελεσματική μέθοδος σύνθεσης του PGA είναι από το γλυκολικό οξύ με άνοιγμα του δακτύλιου μέσω πολυμερισμού με θέρμανση στους 195-230 °C και προσθήκη καταλύτη (Εικ. 5.5) [41]. Η μέθοδος αυτή αποτελεί μια μορφή πολυμερισμού προσθήκης.

![PGA Synthesis](image)

Εικόνα 5.5 Σύνθεση PGA από γλυκολικό οξύ

Ιδιότητες

Το πολυγλυκολικό οξύ έχει υψηλή κρυσταλλικότητα (45-55%), θερμοκρασία υαλόδους μετάπτωσης στους 35-40 °C και θερμοκρασία τήξης στους 220-230 °C.
Αποσυντίθεται στους 260°C. Εξαιτίας της υψηλής του κρυσταλλικότητας, το PGA
dεν είναι διαλυτό στους περισσότερους οργανικούς διαλύτες [41]. Ως προς τις
μηχανικές ιδιότητες, το PGA παρουσιάζει μέτρο ελαστικότητας 2-4 GPa ενώ οι ίνες
από PGA παρουσιάζουν 7- 8.4 GPa [16]. Η πυκνότητά του φτάνει τα 1.5-1.7 g/cm³.
Το PGA μορφοποιείται συνήθως με τις συνήθεις μεθόδους μορφοποίησης όπως
ekβολή, χύτευση και συμπίεση [41]. Συμπολυμερίζεται με άλλα πολυμερή για να
μειωθεί η ακαμψία του υλικού. Χαρακτηρίζεται για τον υδρόφιλο χαρακτήρα του και
συνεπώς για την γρήγορη βιοδιάσπασή του. Κύριο πεδίο εφαρμογών του PGA είναι η
Ιατρική [46].

Βιοδιάσπαση

Η βιοδιάσπαση του PGA πραγματοποιείται σε δύο στάδια, αρχικά με υδρόλυση των
άμορφων περιοχών και στη συνέχεια των κρυσταλλικών, και με βιοδιάσπαση με την
επίδραση ενζύμων. Τα προϊόντα της βιοδιάσπασης είναι αρχικά το γλυκολικό οξύ
που τελικά καταλήγει σε διοξείδιο του άνθρακα και νερό. Το PGA διασπάται τόσο
στο περιβάλλον όσο και μέσα στον οργανισμό (in vivo) με ρυθμό βιοδιάσπασης πολύ
μεγαλύτερο από αυτό του PLA. Στον οργανισμό διασπάται σε περίοδο 6-12 μηνών
ενώ σε μορφή ίνας απορροφάται πλήρως μέσα σε 4-6 μήνες [41]. Το προϊόν της
βιοδιάσπασης, το γλυκολικό οξύ, το PGA, όπως και το PLA, είναι βιοσυμβατά, μη
tοξικά υλικά.

5.2.3 PLGA

Το συμπολυμερές που προκύπτει από τα PLA και PGA είναι το PLGA και η χημική
tου σύσταση φαίνεται στην εικόνα 5.6.

![Εικόνα 5.6 Χημική σύνθεση του PLGA](image)

Οι ιδιότητές του εξαρτώνται από το ποσοστό PLA και PGA σε κάθε περίπτωση. Το
PLGA είναι άμορφο, έχει θερμοκρασία υαλώδους μετάπτωσης 45-55 °C, διασπάται
σε 12-16 μήνες, είναι βιοσυμβατό και χρησιμοποιείται σε εφαρμογές ιατρικής, όπως η ελεγχόμενη μεταφορά φαρμάκου στον οργανισμό, εξαιτίας της ιδιότητάς του να διασπάται στον οργανισμό ομοιόμορφα (bulk erosion) και όχι επιφανειακά (surface erosion), επιτρέποντας τη σταδιακή απελευθέρωση ουσιών στον οργανισμό [16].

5.3 Συνθετικά βιοδιασπώμενα πολύμερα από μη ανανεώσιμες πρώτες ύλες

5.3.1 PVOH ή PVA

Η πολυβινυλική αλκοόλη (PVOH/ PVA) αποτελεί ένα βιοδιασπώμενο υδατοδιαλυτό πολυμερές αφού το μεγαλύτερο ποσοστό βιοδιάσπασης πραγματοποιείται μέσω υδρόλυσης. Η ιδιότητα υδρόλυσης της PVOH όταν έρχεται σε επαφή με νερό είναι γνωστή εδώ και χρόνια αλλά το ενδιαφέρον για κομποστοποιήσμα πολυμερικά υλικά έγινε έντονο μόλις πρόσφατα, γεγονός που οδήγησε στην εμπορική διάθεση της PVOH ως πρώτη ύλη για προϊόντα μιας χρήσης.

Χημική Σύσταση και σύνθεση

Η πολυβινυλική αλκοόλη προκύπτει από το μονομερές βινυλικής ακετόνης μετά από μερική ή πλήρη υδρόλυση κατά την οποία απομακρύνεται η ομάδα της ακετόνης [47]. Στη συνέχεια με λείανση παράγεται η πρώτη ύλη που μορφοποιείται σε προϊόντα (Εικ.5.7).

![Εικόνα 5.7 Τρόπος παρασκευής PVOH](image-url)
Η χημική σύσταση της πολυβινυλικής αλκοόλης είναι της μορφής \(\text{C}_2\text{H}_4\text{O} \), όπως φαίνεται και στην εικόνα 5.8.

- \[\text{C}_2\text{H}_2\text{OH} \]

Εικόνα 5.8 Χημική σύσταση PVOH

Ιδιότητες

Οι φυσικές ιδιότητες οφείλονται στον υψηλή κρυσταλλικότητα της πολυβινυλικής αλκοόλης, που τυπικά φτάνει το 40-50%. Τα υψηλά επίπεδα κρυσταλλικότητας προκύπτουν από το σχετικά μικρό μέγεθος της πλευρικής ομάδας υδροξυλίου. Είναι υδατοδιαλυτό υλικό και με την απορρόφηση νερού μειώνεται η αντοχή στον εφελκυσμό, καθώς και η αντοχή στη θραύση. Πρόκειται επομένως για ένα «ελαστικό» υλικό. Η PVOH δεν είναι διαπερατή από το οξυγόνο. Είναι υδατοδιαλυτό υλικό και με την απορρόφηση νερού μειώνεται η αντοχή στον εφελκυσμό, αυξάνεται η αντοχή στη θραύση. Είναι λιακό δείκτης στην θερμοκρασία κατά τη διάβαση αναφορών και την θερμοκρασία υαλώδους μετάπτωσης (περίπου \(85 \) °C).

Η θερμοκρασία υαλώδους μετάπτωσης είναι περίπου \(85 \) °C ενώ ένα από τα πλεονεκτήματα της PVOH για εφαρμογές σε υψηλότερες θερμοκρασίες είναι το σημείο τήξης (250 °C περίπου). Ο ίνες από τη PVOH διαθέτουν μηχανικές ιδιότητες που τις βοηθούν να αποδίδουν καλύτερα μακροπρόθεσμα, όπως είναι η υψηλή αντοχή στην διαδικασία ναστέμονα μεταξύ 1.8 και 2.3 GPa, και το μέτρο ελαστικότητας με τιμή από 46-70 GPa.

Η συμβατική PVOH δεν μορφοποιείται με τις συνήθεις μεθόδους εκβολής εξαιτίας του γεγονότος ότι διασπάται σε θερμοκρασία κοντά στο σημείο τήξης (περίπου \(230 \) °C). Το αποτέλεσμα είναι να συμβαίνει μερική διάσπαση κατά τη διαδικασία μορφοποίησης. Σήμερα, παρόλα αυτά, παράγεται τύπος πολυβινυλικής αλκοόλης.
που, με προσθήκη πλαστικοποιητή, μορφοποιείται με εκβολή. Η PVOH μορφοποιείται σε φύλλα, μεμβράνες και ίνες ενώ χρησιμοποιείται ως ενίσχυση σε σύνθετο με πολυμερική μήτρα προκειμένου να βελτιώσουν οι μηχανικές ιδιότητες του τελικού σύνθετου υλικού [48]. Εμπορικά διαθέσιμα υλικά από PVOH είναι το Celvol της εταιρίας Celanese, το Elvanol της DuPont και το Poval της Kuraray [49].

Βιοδιάσπαση

Η βιοδιάσπαση της PVOH επηρεάζεται από το βαθμό κρυσταλλικότητας και το μοριακό βάρος της. Δοκιμές έδειξαν ότι δεν βιοδιασπάται αλλά απλά διαλύεται στο νερό [13]. Οι εταιρίες παραγωγής παρόλα αυτά απέδειξαν ότι η PVOH μπορεί να βιοδιασπαστεί σε περιβάλλον μικροβίων, αναερόβια μέσω λυμάτων βιολογικού καθαρισμού, όπως επίσης στο χώμα με πολύ αργό ρυθμό [13].

5.3.2 PCL

Χημική Σύσταση

Η πολυκαπρολακτόνη ή αλλιώς το PCL είναι ένα βιοδιασπώμενο θερμοπλαστικό πολυμερές του οποίου οι πρώτες ύλες προέρχονται από το πετρέλαιο. Αν και δεν παράγεται από ανανεώσιμες πηγές είναι πλήρως βιοδιασπώμενο. Περιλαμβάνει στη χημική του σύσταση ομάδα εστέρα, και προκύπτει με άνοιγμα του δακτύλιου της ε-καπρολακτόνης με τη βοήθεια καταλύτη (Εικ.5.9).

\[-[-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CO}=\text{O}]_{n}^{-}\]

![Εικόνα 5.9 Τρόπος παρασκευής PCL](image-url)
Ιδιότητες

Το PCL έχει χαμηλό σημείο τήξης (58°C-60°C) και για το λόγο αυτό η μορφοποίησή του πραγματοποιείται εύκολα. Η θερμοκρασία υαλώδους μετάπτωσης κυμαίνεται μεταξύ -65 και -60 °C [13]. Το μέτρο ελαστικότητας του PCL είναι 0.2- 0.4 GPa και η αντοχή στον εφελκυσμό έχει τιμή 20-25 MPa. Η πυκνότητά του είναι 1.14 g/cm³ [41].

Η πολυκαπρολακτόνη (PCL) είναι ένα βιοσυμβατό υλικό το οποίο έχει βρεθεί κατάλληλο για κλινικές εφαρμογές. Ως υδρόφοβο υλικό έχει αργή διάσπαση in-vivo. Βιοδιάσπαση

Εξαιτίας του χαμηλού σημείου τήξεως ευνοείται ως μέθοδος διάσπασης του PCL η κομποστοποίηση, κατά την οποία η θερμοκρασία κυμαίνεται γύρω στους 60 °C . Σε περιβάλλον κομποστοποίησης το PCL χωρίς πρόσθετα βιοδιασχίζεται πλήρως σε 6 εβδομάδες [13]. Στην in vivo διάσπαση, το PCL διασχίζεται μέσω υδρόλυσης της ομάδας εστέρα στο ανθρώπινο σώμα και γι’ αυτό χρησιμοποιείται ως βιούλικό σε εμφυτεύματα. Η βιοδιάσπαση του στο σώμα είναι αρκετά αργή. Έχει βρεθεί ότι το PCL χρειάζεται περίπου 2-3 χρόνια για να διασπαστεί αρχικά στο μη τοξικό προϊόν, καπροϊκό οξύ [41]. Σε αναερόβια βιοδιάσπαση σε ανοξείδωτο περιβάλλον (θάλασσα), το PCL διασχίζεται πλήρως σε περίπου οκτώ εβδομάδες και αυτό συμβαίνει εξαιτίας των ενζύμων που βρίσκονται στο θαλασσινό νερό και επιταχυνούν τη βιοδιάσπαση [13].

5.3.3 ΑΑC

Χημική Σύσταση

Οι ΑΑC (αλειφατικοί αρωματικοί σωμπολυεστέρες) είναι πλήρως βιοδιασχίζονται πολυεστέρες που προέρχονται από πετροχημικές πρώτες ύλες. Συνδυάζοντας τη βιοδιάσπαση των αλειφατικών με τις επιθυμητές μηχανικές ιδιότητες των αρωματικών πολυεστέρων. Για να μειωθεί το κόστος, συχνά αναμιγνύονται με θερμοπλαστικό ύμολο, πολυγαλακτικό οξύ και με φυσικές ίνες σε σύνθετα [14]. Οι ΑΑC είναι χρήσιμα υλικά εξαιτίας της ιδιότητάς τους να αναμιγνύονται με ανανεώσιμες πρώτες ύλες όπως το ύμολο και να περιορίζουν την υδρόφυλη συμπεριφορά του [51]. Οι ΑΑC είναι κατάλληλοι για συσκευασία τροφίμων, φρούτων και λαχανικών, για σακούλες κομποστοποίησης, στον αγροτικό τομέα.
κυρίως σε μορφή μεμβράνης και σε είδη υγιεινής μιας χρήσης, αφού διασπώνται και με κομποστοποίηση [13].

![Chemical structure](image)

Εικόνα 5.10 Χημική σύσταση του AAC

Ιδιότητες

Ως προς τις ιδιότητες των AAC, μοιάζουν με αυτές του πολυαιθυλενίου χαμηλής πυκνότητας (LDPE). Η πυκνότητα ενός AAC έχει τιμή 1.21-1.27 g/cm³, θερμοκρασία τήξης στους 110-115 °C και θερμοκρασία υαλώδους μετάπτωσης στους -30 °C. Πρόκειται για ένα μαλακό υλικό, με μέτρο ελαστικότητας Е=0.07-0.107 GPa, χαμηλότερο από αυτό του LDPE. Οι AAC διαθέτουν στεγανότητα σε υγρασία και λιπαρές ουσίες και είναι διαπερατοί στους υδρατμούς [50]. Οι AAC είναι μη τοξικά υλικά και είναι εκτυπώσιμοι. Έχουν υδρόφοβη συμπεριφορά και αναμιγνύονται με θερμοπλαστικό άμυλο για να διορθώσουν τον υδρόφιλο χαρακτήρα του [51]. Τα μίγματα αμύλου και AAC είναι μαλακά στην υφή και παρουσιάζουν μεγάλη αντοχή και επιμήκυνση ως τη θραύση, σε ποσοστό έως και 800% [14]. Δύο εμπορικά διαθέσιμα πολυμερή από αλειφατικούς αρωματικούς συμπολυεστέρες είναι το Ecoflex της εταιρίας BASF και το Eastar-Bio της εταιρίας Eastman (σήμερα έχει παραχωρηθεί στη Novamont) [14]. Το Ecoflex μοιάζει ως προς τις ιδιότητες του με το LDPE, με τη διαφορά ότι επιτρέπει στους υδρατμούς να «διαπεράσουν» το υλικό ενώ βρίσκει εφαρμογή στον αγροτικό τομέα σε μεμβράνες, σε σακούλες κομποστοποίησης και σε είδη υγιεινής σε μορφή φύλλων [50].

Βιοδιάσπαση

Οι AAC διασπώνται πλήρως σε CO₂, νερό και βιομάζα σε συνθήκες κομποστοποίησης σε διάστημα 2-6 μηνών, χωρίς να αφήνουν τοξικές ουσίες, σύμφωνα με τους κανόνες πιστοποίησης ASTM D 6002-96 και EN 13432 [52]. Η βιοδιάσπαση εξαρτάται από την υγρασία, τη θερμοκρασία, και τον τρόπο παραγωγής του πολυμερούς [13]. Οι AAC βιοδιασπώνται τόσο υπό αερόβιες όσο και υπό
αναερόβιες συνθήκες (υδάτινο περιβάλλον) αλλά η βιοδιάσπαση πραγματοποιείται γρηγορότερα με κομποστοποίηση από ότι αναερόβια, στην ίδια θερμοκρασία [53].

5.4 Βιοδιασπώμενα σύνθετα

Εξαιτίας της ενεργειακής και οικολογικής κρίσης των τελευταίων ετών, τα κοινά πολυμερικά σύνθετα με ενίσχυση ινών σε ορισμένες εφαρμογές αντικαθίστανται από σύνθετα με ενίσχυση φυσικών ινών. Οι βιοδιασπώμενες ίνες χρησιμοποιούνται ως ενίσχυση στα σύνθετα, κυρίως ως αντικαταστάτες των υαλονημάτων [25, 45]. Τα πλεονεκτήματα που παρουσιάζουν τα σύνθετα με φυσικές και βιοδιασπώμενες ίνες είναι πολλά (ανανέωσιμα και οικονομικά ιλικά, χαμηλό βάρους, με καλή μηχανική συμπεριφορά). Το γεγονός όμως ότι η μητρική φάση εξακολουθεί να είναι κάποιο κοινό κοινό, μη βιοδιασπώμενο θερμοπλαστικό έχει ως αποτέλεσμα το σύνθετο συνολικά να είναι μη βιοδιασπώμενο και να εξακολουθεί να αποτελεί κίνδυνο για το περιβάλλον, ενώ η πρόσφυση μεταξύ των υδρόφιλων φυσικών ινών και της υδρόφοβης πολυμερικής μήτρας δεν είναι ικανοποιητική [25].

Τα πλήρως βιοδιασπώμενα σύνθετα ή βιοσύνθετα προκύπτουν από την αντικατάσταση της πετροχημικής ρητίνης από ρητίνες φυσικής προέλευσης και/ή την αντικατάσταση των ινών από φυσικές ίνες, φυτικής κυρίως προέλευσης. Τα σύνθετα που προκύπτουν με τον τρόπο αυτό είναι πλήρως βιοδιασπώμενα. Η μήτρα των βιοσύνθετων είναι κάποιο βιοδιασπώμενο πολυμερές (θερμοπλαστικό άμυλο, PHBV, PGA, PLA, AAC) το οποίο αντικαθιστά κοινά πλαστικά όπως το PP και το PE. Ως ίνες στα βιοσύνθετα χρησιμοποιούνται φυσικές ίνες φυτικής προέλευσης (βαμβάκι, ίνες μπαμπού, κάνναβης, λινού), ζωικής και πετροχημικής προέλευσης [27, 54]. Τα βιοσύνθετα ανταποκρίνονται στις απαιτήσεις της αειφόρου ανάπτυξης από την παραγωγή έως και την απόρριψή τους.
Τα βιοσύνθετα ανταποκρίνονται στις μηχανικές και θερμο-μηχανικές απαιτήσεις που έχουν τα κοινά σύνθετα [55]. Κάποια από τα βιοσύνθετα παρουσιάζουν μηχανικές ιδιότητες παρόμοιες με αυτές των σύνθετων με υαλονήματα. Αυτό εξαρτάται από τα υλικά που επιλέγονται αλλά και από το κατά βάρος ποσοστό των ινών και της μήτρας στο σύνθετο. Ένα από τα προβλήματα που παρουσιάζονται στα σύνθετα με ινες είναι η πρόσφυση μεταξύ μητρικής φάσης και ινών. Οι φυσικές ινες και τα βιοδιασπώμενα θερμοπλαστικά ως μήτρα στα βιοσύνθετα παρουσιάζουν ικανοποιητική πρόσφυση, κυρίως εξαιτίας της οργανικής φύσης τους, σε αντίθεση με τα κοινά σύνθετα [56].

Τα βιοσύνθετα βρίσκουν εφαρμογή σε προϊόντα μαζικής παραγωγής και κατανάλωσης μιας χρήσης ή σύντομης χρονικής διάρκειας (1 με 2 χρόνια), σε περιπτώσεις όπου απαιτείται μηχανική αντοχή και χαμηλό βάρος, όπως στις μεταφορές και στην αυτοκινητοβιομηχανία, σε εξαρτήματα που απορροφούν ενέργεια και δύναμη κρουσής (Εικ.5.11) [56]. Σύνθετα από βιοδιασπώμενα πολυμερή χρησιμοποιούνται επίσης στην ιατρική για την αποκατάσταση ιστού και τη μεταφορά φαρμάκου στον οργανισμό. Μετά το τέλος της χρήσης τους βιοδιασπώνται μέσω κομποστοποίησης ολοκληρώνοντας τον κύκλο ζωής τους (Εικ. 5.12). Στον κατασκευαστικό τομέα, τα σύνθετα με φυσικές ινες προσφέρουν καλές μονοτικές ιδιότητες [26].
Εικόνα 5.12 Κύκλος ζωής βιοσύνθετων [26]
ΚΕΦΑΛΑΙΟ 6
ΕΦΑΡΜΟΓΕΣ ΒΙΟΔΙΑΣΠΩΜΕΝΩΝ ΠΟΛΥΜΕΡΩΝ

6.1 Εισαγωγή

Αρχικά, οι εφαρμογές των βιοδιασπώμενων πολυμερών, κυρίως των συνθετικών, ήταν αρκετά περιορισμένες εξαιτίας του υψηλού τους κόστους. Αργότερα, με την επιτακτική ανάγκη για αειφόρο ανάπτυξη και εξοικονόμηση πρώτων υλών, ενέργειας, προστασίας του περιβάλλοντος αλλά και με την αλματώδη ανάπτυξη της τιμής του πετρελαίου, η τιμή των βιοδιασπώμενων πολυμερών έφτασε σε ανταγωνιστικά επίπεδα διευρύνοντας το φάσμα των εφαρμογών τους. Για το λόγο αυτό, αν και αρχικά ο κύριος τομέας εφαρμογής τους ήταν η ιατρική, οι χρήσεις τους επεκτάθηκαν στον τομέα της συσκευασίας τροφίμων, των προϊόντων μιας χρήσης, στον αγροτικό τομέα ακόμα και την αυτοκινητοβιομηχανία και την υφαντουργία.

6.2 Ιατρική

Στην ιατρική, οι εφαρμογές αποκατάστασης ιστού που έχει υποστεί βλάβη είναι είτε μακροχρόνιες είτε προσωρινές. Στις μακροχρόνιες εφαρμογές απαιτούνται σταθερά και ανθεκτικά υλικά, ενώ τα βιοδιασπώμενα υλικά βρίσκουν εφαρμογή σε περιπτώσεις προσωρινών εφαρμογών. Δύο είναι τα κύρια πλεονεκτήματα της εφαρμογής βιοδιασπώμενων πολυμερών στην ιατρική. Πρώτον, το υλικό με το χρόνο χάνει τη λειτουργικότητά του- ως αποτέλεσμα της βιοδιάσπασης- ενώ ταυτόχρονα εξελίσσεται η σταδιακή αποκατάσταση των λειτουργιών του σώματος που είχαν υποστεί βλάβη. Δεύτερον, δεν απαιτείται επιπλέον επέμβαση αφαίρεσης του εμφυτεύματος, αφού αυτό βιοδιασπάται σταδιακά στον οργανισμό.

Ένα υλικό, για να μπορεί να χρησιμοποιηθεί με επιτυχία στον οργανισμό για συγκεκριμένες εφαρμογές θα πρέπει αρχικά να είναι βιοσυμβατό [57]. Ορισμένοι
αλειφατικοί πολυεστέρες (PGA, PLA, PCL) και τα συμπολυμερή τους έχουν χρησιμοποιηθεί σε ιατρικές εφαρμογές, οι κυριότερες από τις οποίες περιλαμβάνουν ράμματα που απορροφώνται από τον οργανισμό, εμφυτεύματα, συστήματα διανομής φαρμάκου στον οργανισμό και περιπτώσεις αποκατάστασης ιστών και μεταμόσχευσης κυττάρων. Από τα βιοδιασπώμενα πολυεστέρες υλικά, οι πολυεστέρες ενδείκνυται για τέτοιες εφαρμογές εξαιτίας ιδιοτήτων όπως η βιοδιάσπαση με υδρόλυση του δεσμού του εστέρα και η απορρόφηση των προϊόντων που προκύπτουν από τον οργανισμό. Κατά τη μελέτη χρήσης βιοδιασπώμενων πολυεστέρων στον οργανισμό, θα πρέπει να λαμβάνονται υπόψη οι εξής παράγοντες [16]:

1. Οι μηχανικές ιδιότητες του πολυεστέρου
2. Θέματα λειτουργικότητας
3. Ρυθμός βιοδιάσπασης /προϊόντα βιοδιάσπασης

6.2.1 Ράμματα

Τα πρώτα ράμματα που χρησιμοποιήθηκαν ήταν οργανικά, ζωικής ή φυτικής προέλευσης, συνθετικά και μεταλλικά. Διακρίνονται σε απορροφήσιμα και μη-απορροφήσιμα. Το catgut θεωρείται το πρώτο φυσικό απορροφήσιμο υλικό που χρησιμοποιήθηκε ως ράμμα στη χειρουργική. Κατασκευάζεται από έντερα ζώων και έχει ως χαρακτηριστικό την υψηλή αντοχή και σκληρότητα. Η αρχική εφαρμογή των βιοδιασπώμενων πολυεστέρων στον τομέα της ιατρικής πριν περίπου 50 χρόνια που εμφανίστηκαν στην αγορά, ήταν ως βίο-αφομοιώσιμα ράμματα. Στη συγκεκριμένη αγορά των βιοαποδομήσιμων υλικών, τα βιοδιασπώμενα ράμματα κατέχουν τη μερίδα του λέοντος από το 1995. Πρόκειται επομένως για μια ήδη «ώριμη» αγορά. Το πλεονέκτημα τους είναι ότι μετά την εφαρμογή τους, αφομοιώνονται από τον οργανισμό χωρίς να απαιτείται επιπλέον διαδικασία για την αφαίρεσή τους, ενώ είναι απόλυτα συμβατά με τον οργανισμό. Διακρίνουμε δύο κατηγορίες ραμμάτων:

- Πεπλεγμένα (Braided)
- Μονοϊνικά (Monofilament)

Τα πεπλεγμένα ράμματα είναι περισσότερο εύκαμπτα ενώ τα μονοϊνικά είναι περισσότερο σκληρά [16]. Η επιλογή του κατάλληλου τύπου ράμματος βασίζεται σε
κριτήρια όπως η αντοχή στον εφελκυσμό, η πιθανότητα μόλυνσης, η ευκολία στη χρήση και η αντοχή. Τα πρώτα και πιο γνωστά εμπορικά βιοαπορροφήσιμα ράμματα είναι τα Dexon από PGA, που κυκλοφόρησαν στην αγορά το 1962 (Εικ.6.1) [46]. To PLA επίσης χρησιμοποιείται για την παραγωγή βιοδιασπώμενων ραμμάτων.

Εικόνα 6.1 Ράμματα από PGA

6.2.2 Μηχανική αποκατάστασης ιστών

Η μηχανική αποκατάστασης ιστών ορίζεται ως η χρήση φυσικών ή συνθετικών υλικών παράλληλα με τα κύτταρα του οργανισμού έτσι ώστε να δημιουργηθεί βιολογικό υπόστρωμα που θα λειτουργήσει ως υποκατάστατο του χαμένου ιστού [41]. Η αποκατάσταση ιστών είναι ένας διεπιστημονικός κλάδος που περιλαμβάνει περιοχές όπως η βιολογία, η επιστήμη των υλικών και η χειρουργική, με σκοπό την παροχή υποστρώματος στο οποίο θα αναπτυχθούν οι ιστοί που θα εισέλθουν στον οργανισμό και θα αποκαταστήσουν, θα διατηρήσουν και θα βελτιώσουν τη χρήση των ήδη υπαρχόντων ιστών του οργανισμού [57, 58]. Το ιστικό ικρίωμα σχεδιάζεται με τέτοιο τρόπο ώστε να υποστηρίζει τον απεκατεστημένο ιστό είτε προστατεύοντας τα κύτταρα είτε βοηθώντας τα να απορροφηθούν από τον οργανισμό. Η μηχανική αποκατάστασης ιστών εφαρμόζεται για παράδειγμα στην αποκατάσταση δέρματος σε περίπτωση εγκαύματος (Εικ.6.2). Αρχικά, για το σκοπό αυτό χρησιμοποιήθηκαν υλικά όπως τα πολυμερή από πρωτεΐνες, για παράδειγμα το κολλαγόνο, ενώ σε άλλες περιπτώσεις χρησιμοποιήθηκαν διασπώμενα συνθετικά πολυμερή.
Τα υλικά που χρησιμοποιούνται ως υπόστρωμα για την αποκατάσταση ιστών στον οργανισμό πρέπει να έχουν πέντε βασικές ιδιότητες [22]. Καταρχήν, το υπόστρωμα πρέπει να είναι βιοσυμβατό. Επίσης πρέπει να μπορεί να στηρίξει την ανάπτυξη των κυττάρων. Τρίτο, πρέπει να είναι σε θέση να καθοδηγεί την εξέλιξη των κυττάρων και τέταρτο, να επιτρέπει την ανάπτυξη ενός συγκεκριμένου αριθμού κυττάρων σε κατάσταση που να μπορούν να ανταπεξέλθουν στις λειτουργίες τους. Τέλος, μόλις το υπόστρωμα ολοκληρώσει το σκοπό της λειτουργίας του, και δεν χρειάζεται πλέον, να μπορεί να διασπαστεί και να μην αφήνει τοξικά υπολείμματα στον οργανισμό. Για κάθε συγκεκριμένη εφαρμογή μπορεί να απαιτούνται επιπλέον ιδιότητες, όπως συγκεκριμένες μηχανικές ιδιότητες σε ιστό που καταπονείται από τάσεις. Για το λόγο αυτό απαιτείται πληθώρα βιοσυμβατών υλικών που θα μπορούν να εφαρμοστούν σε κάθε απαίτηση εφαρμογής. Τα PLA, PGA χρησιμοποιήθηκαν στον τομέα της αποκατάστασης ιστών στον οργανισμό ως υπόστρωμα για την ανάπλαση των κυττάρων [41, 59]. Τα PHA έχουν ερευνηθεί ως προς την βιοσυμβατότητα και βιοδιασπασιμότητά τους. Η εφαρμογή τους στην αποκατάσταση ιστών παρουσιάζεται σχηματικά στην εικόνα 6.3 [33]. Τα κύτταρα τοποθετούνται σε «καλούπια» από βιοδιασπόμενα πολυμερή, πολλαπλασιάζονται, εμφυτεύονται στον οργανισμό και μετά το τέλος της χρησιμότητάς τους, τα καλούπια απορροφώνται από τον οργανισμό.
Για τη δημιουργία τρισδιάστατου πλέγματος για την αποκατάσταση ιστού κυρίως σε μακροχρόνιες εφαρμογές αναγέννησης ιστού, κατάλληλες έχουν βρεθεί οι ίνες από PCL [60]. Στην αποκατάσταση ιστών χρησιμοποιούνται και φυσικά βιοπολυμερή, όπως η χιτίνη. Από χιτίνη κατασκευάζονται διαφανείς και μηχανικά ισχυροί σωλήνες, με τις διαστάσεις τους να ποικίλουν ανάλογα με τη συγκεκριμένη εφαρμογή [23].

6.2.3 Ορθοπεδική - εμφυτεύσιμα υλικά

Η ικανότητα του οργανισμού να αποκαθιστά τις λειτουργίες του υποστηρίζεται από τη χρήση εμφυτευμάτων. Παρά την ευεξία χρήση τους, τα υλικά που χρησιμοποιούνται ως εμφυτεύματα, κυρίως τα μεταλλικά, παρουσιάζουν πολλούς περιορισμούς. Μέχρι τώρα γινόταν χρήση πολύ ανθεκτικών και άκαμπτων υλικών για την αποκατάσταση οστών, όπως τα μετάλλα, γεγονός που προκαλούσε προβλήματα στην υγεία, όπως οστεοπόρωση. Επίσης, άν και τα υλικά αυτά ήταν βιοσυμβατά, εξαιτίας του γεγονότος ότι ήταν ανόργανα, δεν είχαν τη δυνατότητα να προσαρμόζονται σε αλλαγές φυσιολογίας ή να αφομοιώνονται με το χρόνο. Για το λόγο αυτό τα βιοδιασπώμενα πολυμερή, όπως το πολυγλυκολικό (PGA), το πολυγαλακτικό οξύ (PLA) και τα συμπολυμερή τους, όπως το PLGA,
χρησιμοποιούνται σε ορθοπεδικές εφαρμογές για το σχεδιασμό και την παραγωγή εμφυτευμάτων όπως βίδες, λάμες και δισκία (Εικ.6.4) [61]. Αυτά τα πολυμερή διαθέτουν τις κατάλληλες μηχανικές ιδιότητες για την ορθοπεδική, δηλαδή μέτρο του Young που φτάνει τα 7 GPa, πάντα σε εξάρτηση από το πολυμερές και την κρυσταλλικότητά του. Μετά το πέρας του σκοπού τους, τα εμφυτεύματα διασπώνται σταδιακά και απορροφώνται από τον οργανισμό.

Εικόνα 6.4 Βιοδιασπώμενα εμφυτεύματα από PLA στην ορθοπεδική

Ιστορικά, τα μέταλλα αποτελούν τα καταλληλότερα υλικά για ορθοπεδικές εφαρμογές αποκατάστασης οστών μετά από κάταγμα. Παρόλα τα θετικά αποτελέσματα που έχει η χρήση τους, παρουσιάζουν και ορισμένα προβλήματα. Το κύριο πρόβλημα είναι ότι μεταφέρουν το φορτίο από τα οστά στο εμφύτευμα με αποτέλεσμα τα οστά να γίνοντα αδύναμα και να ατροφούν. Επιπλέον, τα μεταλλικά εμφυτεύματα συχνά προκαλούν συσσώρευση μετάλλων στους ιστούς, περιορίζουν την ανάπτυξη του οστού, το οποίο τελικά γίνεται πορώδες και ευθραυστό, προκαλώντας πόνο, οξείδωση και άλλα παρόμοια προβλήματα. Παρόλο πως αυτά τα προβλήματα παρουσιάζουν και το μεταλλικό εμφυτεύματα. Το κύριο πλεονέκτημα της εφαρμογής τους στον τομέα αυτό είναι ότι παρουσιάζουν κατάλληλη αντοχή και διασπώνται μετά το τέλος της λειτουργίας τους χωρίς να προκαλούν προβλήματα στον οργανισμό, ενώ το βάρος σταδιακά θα έχει μεταφερθεί εξ ολοκλήρου στο θεραπευμένο οστό χωρίς να χρειάζεται δεύτερη επέμβαση για την αφαίρεσή τους [57]. Όπως φαίνεται και στην εικόνα 6.5, τα βιοδιασπώμενα εμφυτεύματα μεταφέρουν σταδιακά το βάρος από το εμφύτευμα στο οστό που νοσεί,
βελτιώνοντας έτσι το αποτέλεσμα της θεραπείας. Ο ρυθμός βιοδιάσπασης επομένως παίζει σημαντικό ρόλο στη συγκεκριμένη εφαρμογή, ο οποίος πρέπει να συμβαδίζει με τη θεραπεία του οστού. Οι μέχρι τώρα εφαρμογές απευθύνονται σε θεραπεία μικρών οστών, για το λόγο ότι για εμφυτεύματα σε μεγαλύτερα οστά απαιτούνται υλικά με μεγαλύτερη ακαμψία [16]. Η διαδικασία βιοδιάσπασης των εμφυτευμάτων διαρκεί από μερικούς μήνες έως και χρόνια, ανάλογα με τις συνθήκες κάθε περίπτωσης. Μετά την in-vivo διάσπαση το εμφύτευμα αποβάλλεται από τον οργανισμό με τη μορφή CO₂ και νερού [62].

![Diagram](https://via.placeholder.com/150)

Εικόνα 6.5 Μεταφορά τάσης από το βιοδιασπώμενο εμφύτευμα στο οστό

Για τη θεραπεία καταγμάτων σε οστά χρησιμοποιούνται σύνθετα από βιοδιασπώμενους πολυεστέρες τόσο για τη μητρική φάση όσο και για την ενίσχυση από ίνες, όπως το PLGA και το PGA. Στο σύνθετο ενσωματώνονται συστατικά όπως ο υδροξιαπατίτης, μεταλλικά και άλλα θρεπτικά συστατικά για την ενίσχυση της ανάπτυξης του νέου οστού [63]. Σε εφαρμογές στην ορθοπεδική χρησιμοποιείται επίσης η χιτίνη, προσφέροντας μηχανική υποστήριξη για την αναγέννηση των κυττάρων του οστού, σε μορφή μικροσφαιρών, διδιάστατης μεμβράνης και τρισδιάστατων βελονών και ράβδων. Η χιτοσίνη έχει ερευνηθεί για τη χρήση της ως νανοσύνθετο με υδροξιαπατίτη σε εφαρμογές αποκατάστασης οστού αντί για τη ήδη χρησιμοποιούμενο PMMA, εξαιτίας της καλύτερης αντοχής του σύνθετου στην κάμψη (αντοχή 86 MPa και μέτρο ελαστικότητας 3.4 GPa) [24].
6.2.4 Μεταφορά φαρμάκου στον οργανισμό

Η ελεγχόμενη μεταφορά φαρμάκου στον οργανισμό προκύπτει όταν ένα υλικό, φυσικό ή συνθετικό, λειτουργεί ως περιβάλλημα σε συνδυασμό με κάποιο φάρμακο με σκοπό η φαρμακευτική ουσία να ελευθερωθεί σταδιακά και να ενεργήσει στον οργανισμό με ένα προσχεδιασμένο τρόπο. Τα βιοδιασπώμενα πολυμερή εφαρμόζονται στον τομέα αυτό, επιμηκύνοντας τη δράση των φαρμάκων στον οργανισμό, χωρίς να απαιτείται αφαίρεσή τους μετά το τέλος της θεραπείας [59]. Ο σκοπός της διαδικασίας αυτής είναι η επίτευξη αποτελεσματικότερων θεραπειών, ακολουθώντας τη λογική ότι παρέχεται η κατάλληλη ποσότητα φαρμάκου στο κατάλληλο σημείο και στην κατάλληλη στιγμή [64]. Το ιδανικό σύστημα μεταφοράς φαρμάκου πρέπει να είναι βιοσυμβατό, με μηχανική αντοχή, ασφαλές, εύκολο στο να τοποθετηθεί, να παραχθεί και να αποστειρωθεί [59]. Ο τομέας αυτός βρίσκεται σε εξέλιξη και οι προοπτικές που ανοίγονται είναι μεγάλες.

Οι τρόποι μεταφοράς φαρμάκου ποικίλουν ανάλογα με την περίπτωση. Η απελευθέρωση της φαρμακευτικής ουσίας μπορεί να είναι συνεχής, για ένα χρονικό διάστημα ή να είναι κυκλική με συγκεκριμένη περίοδο. Αυτό επιτυγχάνεται με τη δημιουργία συστημάτων «πλαισίων» από πολυμερές είτε χρησιμοποιώντας το πολυμερές ως χώρο «αποθήκευσης» φαρμάκου. Στα συστήματα «πλαισίου» οι ουσίες διαχέονται από το πολυμερές στο εξωτερικό περιβάλλον και ο ρυθμός απελευθέρωσής τους μειώνεται με την πάροδο του χρόνου. Στα συστήματα «αποθήκευσης» φαρμάκου, οι ουσίες εσωκλείονται σε μια βιοδιασπώμενη μεμβράνη και απελευθερώνονται με συνεχή ρυθμό με διάχυση από τη μεμβράνη [59]. Η βιοδιάσπαση στα συστήματα «αποθήκευσης» φαρμάκου γίνεται συνήθως από μια βιοδιασπώμενη μεμβράνη (bulk erosion), δηλαδή σε ολόκληρο τον όγκο, όπως φαίνεται σχηματικά στην εικόνα 6.6, ενώ σε περιπτώσεις συστημάτων «πλαισίου» πραγματοποιείται επιφανειακά (surface erosion) [65].
Εικόνα 6.6 Μεταφορά φαρμάκου από σύστημα επιφανειακής διάβρωσης (α) και ομοιόμορφης διάβρωσης (β)

Για τα συστήματα αυτά χρησιμοποιείται πλήθος υλικών, ιδιαίτερα πολυμερών. Τα τελευταία χρόνια, η χρήση βιοδιασπώμενων πολυμερών και η εφαρμογή τους στη μεταφορά φαρμάκου είναι πλέον γεγονός, με κύριους εκπροσώπους στις εφαρμογές αυτές τα πολυμερή PLA, PGA και PLGA, τα οποία βιοδιασπώνται ομοιόμορφα στον οργανισμό [16, 64]. Ένα ακόμα πολυμέρο που χρησιμοποιείται για τη συγκεκριμένη εφαρμογή είναι η PVOH [65]. Τα περισσότερα βιοδιασπώμενα πολυμερή είναι σχεδιασμένα ώστε να διασπάνται μέσω υδρόλυσης των πολυμερικών αλυσίδων σε συστατικά αποδεκτά από τον οργανισμό, σταδιακά σε CO2 και νερό. Η πιο συνηθισμένη μορφή αυτών των βιοδιασπώμενων πολυμερών είναι τα μικροσφαιρίδια, που εισχωρούνε είτε δια στόματος είτε με ενέσιμο τρόπο. Έχει μελετηθεί η χρήση της χιτίνης για την ελεγχόμενη μεταφορά φαρμάκου στον οργανισμό ιδιαίτερα όταν είναι χρήσιμη η αργή απελευθέρωση ουσιών στον οργανισμό, σε περιπτώσεις θεραπείας καρκίνου [20, 23].

Τελευταίος μελετάται και η μεταφορά πρωτεΐνων στον οργανισμό μέσω βιοδιασπώμενων νανο-μονάδων από σύνθετα από PLA, PLGA και χιτίνη, των οποίων το περίβλημα είναι υδρόφιλο έτσι ώστε με υδρόλυση να απελευθερώνονται οι φαρμακευτικές ουσίες στο σημείο του οργανισμού που χρειάζεται τη δεδομένη στιγμή [66]. Το κολλαγόνο επίσης έχει χρησιμοποιηθεί σε εφαρμογές για τη μεταφορά φαρμάκου στον οργανισμό [22].
6.2.5 Αισθητική χειρουργική

Μεταξύ των υλικών που χρησιμοποιούνται σήμερα ως εμφυτεύματα στην αισθητική χειρουργική για τη διόρθωση των ατελειών του δέρματος είναι και το πολυγαλακτικό οξύ (PLA-New Fill). Το πολυγαλακτικό οξύ οθείνει τα κύτταρα να παράγουν το δικό τους κολλαγόνο. Χρησιμοποιείται για τη διόρθωση ρυτίδων και του σχήματος του προσώπου. Η μέθοδος αυτή πλεονεκτεί στο γεγονός ότι η ποσότητα κολλαγόνου που θα παραχθεί είναι ελεγχόμενη.

6.2.6 Κατευθυνόμενη ιστική αναγέννηση

Η κατευθυνόμενη ιστική αναγέννηση αποτελεί μια τεχνική που έχει σαν στόχο την αναγέννηση των χαμένων περιοδοντικών ιστών. Με χρήση μεμβρανών γίνεται επιλεκτική μετανάστευση κυττάρων που θα καταλάβουν το χώρο της περιοδοντικής βλάβης κατά την επουλώση με σκοπό την παραγωγή οστέινης, περιρριζίου και οστίτη ιστού (Εικ.6.7). Η κλασσική μέθοδος χρησιμοποιεί μεμβράνες από Teflon ενώ μια σημαντική εξέλιξη στον τομέα αυτό ήταν η χρήση βιοαπορροφήσιμων μεμβρανών από υλικά όπως το πολυγαλακτικό οξύ και το κολλαγόνο. Η χρήση απορροφόμενων μεμβρανών στην εφαρμογή αυτή πλεονεκτεί σε σχέση με τη χρήση Teflon στο γεγονός ότι δεν χρειάζεται επέμβαση για την αφαίρεση της μεμβράνης. Η μεμβράνη παραμένει για 6-8 εβδομάδες πριν την αποδόμησή της [67].

![Εικόνα 6.7 Μεμβράνη ιστικής αναγέννησης στα ούλα](image)

6.3 Προϊόντα περιορισμένου χρόνου χρήσης

Ένα από τα κύρια πλεονεκτήματα των βιοδιασπώμενων πολυμερών είναι η χαρακτηριστική ιδιότητα της βιοδιάσπασής κάτω από συγκεκριμένες συνθήκες και σε συγκεκριμένο χρονικό διάστημα. Η ιδιότητα αυτή παρουσιάζεται χρήσιμη σε
εφαρμογές προϊόντων περιορισμένου χρόνου χρήσης, όπου τα προϊόντα χρησιμοποιούνται για ένα μικρό χρονικό διάστημα και στη συνέχεια απορρίπτονται, τα οποία αν είναι κατασκευασμένα από συνθετικό πλαστικό, θα παραμείνουν στο περιβάλλον για πάρα πολλά χρόνια. Ένα κλασσικό παράδειγμα προϊόντος είναι οι πλαστικές σακούλες και οι σακούλες απορριμμάτων. Οι σακούλες απορριμμάτων από βιοδιασπώμενα πλαστικά έχουν το πλεονέκτημα ότι αυξάνουν το βαθμό βιοδιάσπασης των οργανικών απορριμμάτων τα οποία περιέχουν, σε περιβάλλον βιοδιάσπασης και δεν επιβαρύνουν το περιβάλλον με επιπλέον απορρίμματα [13].

Τα βιοδιασπώμενα προϊόντα μιας χρήσης, αφού ολοκληρώσουν τον κύκλο ζωής τους, βιοδιασπώνται με μια από τις υπάρχουσες μεθόδους διαχείρισης απορριμμάτων και μετά από ένα χρονικό διάστημα επιστρέφουν στο περιβάλλον ως CO2 και νερό. Οι πιο συνηθισμένες εφαρμογές περιορισμένου χρόνου χρήσης είναι οι εξής:

- Φιάλες νερού και γάλακτος μιας χρήσης
- Σκεύη φαγητού
- Συσκευασίες φαγητού (για ζεστό και κρύο)
- Σακούλες σκουπιδιών/για ψώνια
- Είδη προσωπικής υγιεινής

Τα πλαστικά από άμυλο είναι ιδιαίτερα διαδεδομένα στον τομέα της συσκευασίας τροφίμων κυρίως εξαιτίας του χαμηλού του κόστους (το 2004 ένα κιλό στοίχιζε περίπου 1-4 ευρώ το κιλό) [32]. Από θερμοπλαστικό άμυλο παράγονται προϊόντα κυρίως σε μορφή μεμβράνης, όπως συσκευασίες φαγητού, σακούλες σούπερ-μάρκετ, με το πλεονέκτημα ότι μετά την εφαρμογή θάβονται στο χώμα και μετά από ένα καθορισμένο διάστημα διασπώνται. Επιπλέον, το θερμοπλαστικό άμυλο μορφοποιείται σε αφρώδη προϊόντα και συσκευασίες φαγητού οι οποίες θα μπορούσαν να αντικαταστήσουν το αφρώδες PS σε πολλές εφαρμογές, διατηρώντας τις επιθυμητές ιδιότητες του PS [13, 19]. Τομείς εφαρμογών είναι προϊόντα μιας χρήσης σε νοσοκομεία, μεμβράνες συσκευασίας, σακούλες, αφρώδες συσκευασίες, σε οικιακά προϊόντα μιας χρήσης και σε παιχνίδια [30]. Τα PHA χρησιμοποιούνται επίσης σε εφαρμογές περιορισμένου χρόνου χρήσης, στη συσκευασία τροφίμων (μπουκάλια, μεμβράνες), σε είδη ατομικής υγιεινής μιας χρήσεως αλλά και προϊόντα
όπως πιστωτικές κάρτες (Εικ.6.8). Τα μόνα PHA τα οποία παράγονται σε μεγάλη κλίμακα μέχρι στιγμής είναι τα PHB, PHV και τα συμπολυμερή τους (PHBV). Οι AAC, όπως το Ecoflex, μορφοποιούνται σε ίνες για εφαρμογές σε υφάσματα μιας χρήσης και μεμβράνες συσκευασίας.

Εικόνα 6.8 Εφαρμογές των PHAs

Η πολυβινυλική αλκοόλη χρησιμοποιείται σε μορφή ίνων και καλείται να αντικαταστήσει τις ίνες HDPE σε ορισμένες εφαρμογές. Εξαιτίας της ιδιότητας του πολυμερούς να διαλύεται στο νερό, βρίσκει εφαρμογή σε περιπτώσεις συσκευασίας προϊόντων τα οποία είναι βλαβερά, τοξικά και καλό να αποφεύγεται η επαφή τους με το δέρμα, όπως για παράδειγμα περιπτώσεις αντικειμένων που χρησιμοποιούνται στα νοσοκομεία, σακούλες για άπλυτα και δοχεία μιας χρήσης (Εικ.6.9). Επίσης, χρησιμοποιείται ως προστατευτικό σε μπουκάλια από PET, σε βιοϊατρικές εφαρμογές και στη βιομηχανία τροφίμων. Οι πιθανοί τομείς αγοράς που βρίσκονται εφαρμογή τα προϊόντα από PVOH είναι οι τρεις παρακάτω [49]:

Εικόνα 6.9 Εφαρμογές νοσοκομείου
1. Εφαρμογές που κάνουν χρήση της ελεγχόμενης διαλυτότητας του υλικού στο νερό. Οι εφαρμογές νοσοκομείου, όπως σακούλες πλυντηρίου μιας χρήσης, αντικείμενα που εκτίθενται σε μικρόβια και είναι μιας χρήσης ανήκουν σε αυτή την κατηγορία (καλύμματα κρεβατιών, δοχεία).

2. Εφαρμογές που κάνουν χρήση των ιδιοτήτων διαπερατότητας. Για παράδειγμα, η μη διαπερατότητα του οξυγόνου από την PVOH την καθιστά κατάλληλη για εφαρμογές συσκευασίας τροφίμων, αντικαθιστώντας υλικά όπως το PP.

3. Εφαρμογές που βασίζονται στη βιοδιάσπαση. Πρόκειται για εφαρμογές που σχετίζονται με αγροτικά προϊόντα, όπως μεμβράνες θερμοκηπίου και σακούλες σκουπιδιών, αλλά και εφαρμογές στην ιατρική.

Εικόνα 6.10 Εφαρμογές βιοδιασπώμενων προϊόντων μιας χρήσης
Υπολογίζεται ότι το 30-40% των πλαστικών χρησιμοποιείται στη συσκευασία, και περίπου το μισό από αυτό το ποσό χρησιμοποιείται για τη συσκευασία τροφίμων [12]. Τα βιοδιασπώμενα πλαστικά παρουσιάζονται ως εναλλακτική λύση στη συσκευασία τροφίμων, αντικαθιστώντας τις μεμβράνες από κοινά πλαστικά με βιοδιασπώμενες μεμβράνες που διαθέτουν παρόμοιες ιδιότητες με τις συσκευασίες που ήδη χρησιμοποιούνται ευρέως (Εικ.6.10). Όπως σημβαίνει σε όλα τα πλαστικά, έτσι και στις συσκευασίες από βιοδιασπώμενα θερμοπλαστικά πρέπει να αποφεύγονται οι υψηλές θερμοκρασίες.

Το πρώτο εμπορικά διαθέσιμο μπουκάλι που χρησιμοποιείται για την εμφιάλωση νερού από πλήρως βιοδιασπώμενο πολυμερές (PLA) έχει την ονομασία BIOTA Spring water (Εικ.6.11). Το μπουκάλι είναι κατασκευασμένο από PLA της εταιρίας Nature Works LLC. Το BIOTA έχει εγκριθεί από τον BPI (Biodegradable Products Institute) και διασπάται με κομποστοποιήση, σε κατάλληλες συνθήκες μέσα σε 12 εβδομάδες. Άλλες εταιρίες εμφιαλωμένου νερού που χρησιμοποιούνν βιοδιασπώμενα πλαστικά μπουκάλια είναι οι Natural Iowa, Belu, Vitamore και +1Water (Εικ.6.11) [31].
Εικόνα 6.11 Συσκευασίες από βιοδιασπόμενα πολυμερή
6.4 Αγροτικά προϊόντα

Τα βιοδιασπώμενα πλαστικά χρησιμοποιούνται στον τομέα της γεωργίας με τον ίδιο τρόπο που χρησιμοποιούνται οι μεμβράνες από LDPE μέχρι σήμερα, για παράδειγμα στα θερμοκήπια. Τοποθετούνται με τη βοήθεια γεωργικών μηχανημάτων πριν ή κατά τη διάρκεια της σποράς, ενώ μετά τη συγκομιδή θάβονται στο χώμα και διασπώνται. Ο κύριος στόχος των μεμβρανών αυτών είναι να εμποδίσουν την ανάπτυξη ανεπιθύμητων φυτών στην καλλιεργημένη γη, να βοηθήσουν στην ανάπτυξη του φυτού και συγχρόνως να συγκρατούν το έδαφος. Με τον τρόπο αυτό αποφεύγεται η χρήση λιπασμάτων ή άλλων τοξικών φυτοφαρμάκων, ενώ συγχρόνως δεν επιβαρύνουν το περιβάλλον με επιπλέον απόβλητα, αντίθετα ωφελούν κάνοντας το έδαφος περισσότερο εύφορο μετά τη διάσπασή τους. Κατάλληλα υλικά για την εφαρμογή αυτή αποτελούν θερμοπλαστικά από άμυλο και AAC όπως το Ecoflex και το Eastar-bio [12, 50]. Στον αγροτικό τομέα χρησιμοποιούνται επίσης βιοδιασπώμενες γλάστρες, που τοποθετούνται στο χώμα μαζί με το φυτό που θα φυτευτεί στον κήπο, οι γλάστρες διασπώνται και το φυτό συνεχίζει να αναπτύσσεται. Πλαστικές βιοδιασπώμενες σακούλες χρησιμοποιούνται και για τη συγκομιδή φύλλων και άλλων οργανικών αποβλήτων με τη διαφορά ότι διασπώνται μαζί με το περιχώμενο τους (Εικ.6.12) [14]. Ο χρόνος ζωής των γεω-υφασμάτων και των γεω-μεμβρανών ποικίλει από 6 μήνες έως και 10 χρόνια. Υλικά όπως το άμυλο, το PLA, το PCL, οι AAC και η PVOH χρησιμοποιούνται στον αγροτικό τομέα.
6.5 Ύφασμα – ίνες

Αρχικά, οι ίνες που χρησιμοποιήθηκαν από τον άνθρωπο είχαν φυτική προέλευση, προερχόμενες από φυσικά πολυμερή. Αργότερα, οι συνθετικές ίνες αντικατέστησαν σε μεγάλο ποσοστό τις φυσικές. Σήμερα, οι βιοδιασπώμενες ίνες από αλειφατικούς πολυεστέρες καλούνται να γεφυρώσουν το χάσμα που δημιουργήθηκε μεταξύ των φυσικών και των συνθετικών ίνων, τόσο ως προς τις ιδιότητες όσο και ως προς την τιμή, αφού φαίνεται πως τοποθετούνται κάποιο ενδιάμεσα [26]. Οι ίνες από βιοδιασπώμενα πολυμερή έχουν αρχίσει να γίνονται εμπορικά διαθέσιμες τα τελευταία χρόνια σε περιοχές όπως η υφαντουργία, η ταπητουργία και τα υφάσματα ρουχισμού [68]. Από PLA κατασκευάζονται ίνες όπως οι ίνες Lactron, INGEO και EcoPLA.

Η INGEO, η οικολογική ίνα της εταιρίας Nature Works που κατασκευάζεται από καλαμπόκι κερδίζει όλο και περισσότερο ύδαφος στο χώρο της υφαντουργίας [69]. Η ίνα χρησιμοποιείται σε υφάσματα επιπλώσεων και κουρτίνες, σε ρουχισμό, ενώ τον τελευταίο καιρό φαίνεται να κατακτά και το χώρο της υψηλής ραπτικής, προσελκύοντας το ενδιαφέρον μεγάλων εταιριών όπως της Diesel και άλλων.
γνωστών σχεδιαστών (Εικ.6.13). Φτιαγμένη από τον βιοδιασπώμενο πολυεστέρα PLA, η INGEO έχει ιδιότητες οι οποίες μοιάζουν με πολυεστέρα, παρουσιάζει όμως περισσότερα πλεονεκτήματα σε σχέση με τις συνθετικές άλλα και σε σχέση με πολλές φυσικές ίνες. Έχει μεγαλύτερη σταθερότητα ως προς τις διαστάσεις, μεγαλύτερη αντοχή, προστατεύει περισσότερο από τις υπεριώδεις ακτίνες σε σχέση με άλλες συνθετικές ίνες, αφήνει το δέρμα να "αναπνέει" και, ιδιαίτερα αν αναμειχθεί με βαμβάκι ή μαλλί, είναι εξαιρετικά απορροφητική στην υγρασία και στον ιδρώτα. Το μόνο της μειονέκτημα είναι ότι δεν απορροφά καλά τις βαφές, περιορίζοντας την ευελιξία των κατασκευαστών στα χρώματα και τη σταθερότητά τους.

Εικόνα 6.13 Εφαρμογές από ίνες PLA
6.6 Αυτοκινητοβιομηχανία

Βιοδιασπώμενα πολυμερή χρησιμοποιούνται γενικά στον τομέα μεταφορών και στην αυτοκινητοβιομηχανία, κυρίως σε εσωτερικά μέρη του αυτοκινήτου, με σκοπό να αντικαταστήσουν τμήματα που κατασκευάζονται από πετροχημικά πλαστικά. Τα βιο-πλαστικά αυτά είναι υψηλής αντοχής, θερμικής αντίστασης και ελαφρύτερα. Το γεγονός αυτό τα καθιστά φιλικά προς το περιβάλλον, τη στιγμή που εξοικονομούν ενέργεια κατά τη χρήση τους - συγκεκριμένα καταναλώνουν 30% λιγότερη ενέργεια- ενώ απαιτείται μικρότερη ποσότητα υλικού για την κατασκευή τους. Είναι τρεις φορές πιο αποτελεσματικά σε σχέση με άλλα πλαστικά ως προς την απορρόφηση ενέργειας. Περιέχουν άμυλο και είναι ουδέτερα ως προς την εκπομπή διοξειδίου του άνθρακα [70]. Η εταιρία ελαστικών Goodyear έχει αντικαταστήσει σε ορισμένα από τα ελαστικά της ένα τμήμα άνθρακα με βιοπλαστικό Mater-Bi, με αποτέλεσμα να έχουν καλύτερη οδική συμπεριφορά σε σχέση με τα κοινά ελαστικά (Εικ.6.14) [30]. Η χαμηλή πυκνότητα των φυσικών πολυμερών προσφέρει το πλεονέκτημα του χαμηλού βάρους και της εξοικονόμησης καυσίμων κατά τη διάρκεια χρήσης τους ενώ οι μηχανικές τους ιδιότητες προσφέρουν ιδία αν όχι καλύτερη λειτουργικότητα. Συγχρόνως, τα περιβαλλοντικά φελέλη είναι πολλά από τη χρήση βιοδιασπώμενων πολυμερών στη θέση των πετροχημικών στην αυτοκινητοβιομηχανία, όπως η μείωση των εκπομπών διοξειδίου του άνθρακα κατά την παραγωγή τους, η μείωση της ενέργειας που καταναλώνεται κατά την παραγωγή και χρήση τους και το γεγονός ότι μετά το τέλος του κύκλου ζωής τους είναι σε θέση να βιοδιασπαστούν στο περιβάλλον χωρίς να αφήνουν τοξικά απόβλητα.

Ιδιαίτερο ενδιαφέρον παρουσιάζει η χρήση των φυσικών ινών ως ενίσχυση σε σύνθετα υλικά, σε περιπτώσεις αντικατάστασης των συνθετικών ινών και κυρίως των υαλονημάτων. Η χαμηλή πυκνότητα των πυκνότητα και το χαμηλό κόστος καθιστά τα σύνθετα με ινές κατάλληλα για εφαρμογές στον τομέα των μεταφορών και της βιομηχανίας (εξαρτήματα αυτοκινήτων και παλέτες μεταφοράς) (Εικ.6.14). Η χρήση φυσικών ινών σε βιομηχανικό επίπεδο βελτιώνει την περιβαλλοντική αειφορία των προϊόντων, ειδικά στην αυτοκινητοβιομηχανία.
Εικόνα 6.14 Εξαρτήματα αυτοκινήτου από πολυμερής βιοδιασπόμενο σύνθετο
ΚΕΦΑΛΑΙΟ 7

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΚΥΚΛΟΥ ΖΩΗΣ ΒΙΟΔΙΑΣΠΩΜΕΝΩΝ ΠΟΛΥΜΕΡΩΝ

7.1 Εισαγωγή

Ο περιβαλλοντικός αντίκτυπος ενός υλικού ή ενός προϊόντος, ως μέρος της σχεδίασης για το περιβάλλον και της αειφορίας, υπολογίζεται χρησιμοποιώντας την τεχνική της Αξιολόγησης του Κύκλου Ζωής του προϊόντος ή του υλικού (Life Cycle Assessment- LCA). Αν και ως μεθοδολογία χρησιμοποιείται τα τελευταία 10-15 χρόνια, η εφαρμογή της δεν είναι όσο διαδεδομένη θα μπορούσε. Η ΑΚΖ αναφέρεται στον κύκλο ζωής του υλικού ή προϊόντος χωρίζοντας τον σε εξί υπό-κατηγορίες: την εξαγωγή των πρώτων υλών, την παραγωγή του υλικού ή του προϊόντος, τη διανομή, τη συσκευασία, τη χρήση και την διαχείριση των τελικών απορριμμάτων. Θεωρεί δηλαδή ότι ο αντίκτυπος ενός υλικού ή προϊόντος ξεκινάει από τη στιγμή που γίνεται η εξόρυξη των πρώτων υλών μέχρι και τη στιγμή που μετατρέπονται σε απορρίμματα και επιστρέφουν στο περιβάλλον (from cradle to grave). Σε ορισμένες περιπτώσεις στην ΑΚΖ δεν συμπεριλαμβάνονται τα στάδια χρήσης και απόρριψης του προϊόντος, η μελέτη δηλαδή περιορίζεται στα στάδια εξαγωγής πρώτων υλών και παραγωγής προϊόντων (from cradle to factory).

7.2 Μεθοδολογία της Αξιολόγησης του Κύκλου Ζωής (AKZ)

Η αξιολόγηση του κύκλου ζωής αποτελεί μια τυποποιημένη μέθοδο μέτρησης και αξιολόγησης του αντίκτυπου που έχει ένα προϊόν ή ένα υλικό στο περιβάλλον, σχεδιασμένη σύμφωνα με διεθνή πρότυπα πιστοποίησης (ISO 14040-14043, 1997-1999). Η ΑΚΖ είναι δομημένη σε τέσσερα βασικά στοιχεία τα οποία είναι τα εξής (Εικ.7.1) [71]:

127
1. καθορισμός του στόχου και του πεδίου ενδιαφέροντος
2. καταγραφή των δεδομένων του κύκλου ζωής
3. αξιολόγηση των επιπτώσεων του κύκλου ζωής
4. ερμηνεία του κύκλου ζωής

Ο καθορισμός του στόχου και του πεδίου ενδιαφέροντος περιλαμβάνει τον ορισμό της λειτουργικής μονάδας που αποτελεί το μέτρο σύγκρισης της αξιολόγησης, το σύστημα του κύκλου ζωής του προϊόντος που μελετάται, τα όρια του συστήματος, την κατανομή των διεργασιών, τις υποθέσεις και τους περιορισμούς. Η λειτουργική μονάδα μπορεί να είναι είτε μια υπηρεσία ή μια ποσότητα υλικού ή, πιο συνήθισμενά, ένα προϊόν. Η καταγραφή των δεδομένων του κύκλου ζωής περιλαμβάνει τη συλλογή δεδομένων και τις διαδικασίες υπολογισμού για την ποσοτικοποίηση των συνολικών εισόδων και εξόδων του συστήματος που έχουν σχέση με το περιβάλλον, για παράδειγμα τη χρήση πρώτων υλών, την κατανάλωση ενέργειας, την εκπομπή αερίων, τα απορρίμματα και τη χρήση γης.

Η αξιολόγηση του αντίκτυπου του κύκλου ζωής αναφέρεται στη σημασία των πιθανών περιβαλλοντικών συνεπειών χρησιμοποιώντας τα αποτελέσματα της καταγραφής δεδομένων του κύκλου ζωής. Στόχος αυτής της φάσης είναι η κατηγοριοποίηση των εξόδων του συστήματος με τέτοιο τρόπο που τα αποτελέσματα να είναι συγκρίσιμα. Με τον τρόπο αυτό οι παράμετροι συνοψίζονται σε κατηγορίες «περιβαλλοντικών συνεπειών». Στη φάση αυτή χρησιμοποιούνται διάφορες μεθοδολογίες κατηγοριοποίησης των στοιχείων, όπως το Eco-indicator '95, λογισμικό που βασίζεται στα ποσοτικά δεδομένα της ΑΚΖ για τον υπολογισμό της συνολικής επιβάρυνσης του περιβάλλοντος ενός υλικού ή μιας διαδικασίας ανά κατηγορία [71].

Τέλος, η ερμηνεία του κύκλου ζωής είναι το τελικό βήμα της ΑΚΖ όπου τα συμπεράσματα εξάγονται τόσο από τη φάση καταγραφής των δεδομένων όσο και από τη φάση αξιολόγησης του αντίκτυπου ανά κατηγορία. Σαν αποτέλεσμα από την ερμηνεία των προηγούμενων φάσεων μπορεί να θεωρηθεί η πραγματοποίηση συντάσεων που θα απευθύνονται σε παραγωγούς ή νομοθέτες.
Κάποιες από τις αξιολογήσεις κύκλου ζωής λαμβάνουν ως λειτουργική μονάδα ένα υλικό χωρίς να αναφέρονται σε συγκεκριμένη εφαρμογή και κάποιες άλλες ένα τελικό προϊόν. Οι αναλύσεις σε υλικά έχουν το πλεονέκτημα ότι δίνουν μια πρώτη εντύπωση για το τι θα ακολουθήσει, χωρίς να σημαίνει όμως ότι η πρώτη εντύπωση είναι και τελικά σωστή [71]. Για παράδειγμα, αν ο αντίκτυπος στο περιβάλλον για ένα υλικό ως πρώτη ύλη είναι αρνητικός, αυτό σημαίνει ότι οι περιβαλλοντικές συνέπειες τα είναι αρνητικές και όταν το υλικό γίνει προϊόν. Όμως, τυχόν επιθυμητός αντίκτυπος της πρώτης ύλης δεν είναι απαραίτητο ότι θα παραμείνει και όταν το υλικό γίνει τελικό προϊόν, αφού δεν λαμβάνονται υπόψη παράγοντες όπως η ποσότητα των υλικών που χρησιμοποιείται για τη δημιουργία ενός προϊόντος, και η ενέργεια που καταναλώνεται για τη μεταφορά και τη χρήση του προϊόντος. Παρόλα αυτά, και στις δύο περιπτώσεις δίνονται χρήσιμες πληροφορίες.

Τα πεδία ενδιαφέροντος του παρόντος κεφαλαίου σχετίζονται με τη διαχείριση της ενέργειας για την παραγωγή πλαστικών και την διαχείριση των απορριμμάτων σε κάθε περίπτωση. Συγκεκριμένα, η συζήτηση εστιάζεται στα σύνθετα με πολυμερική μήτρα και ενίσχυση ινών. Τα σύνθετα με πολυμερική μήτρα και ενίσχυση υαλονημάτων χρησιμοποιούνται σε εφαρμογές όπως η αυτοκινητοβιομηχανία αλλά και μεγάλης παραγωγής, όπως σε βιομηχανικά δάπεδα και σε παλέτες μεταφοράς, εφαρμογές στις οποίες η απόδοση του υλικού εξετάζεται με βάση τις επιπτώσεις στην
αντοχή, στο βάρος και στην κατανάλωση καυσίμων, τόσο από άποψη οικονομίας όσο και από την άποψη της αειφόρου ανάπτυξης. Παρακάτω μελετάται η πιθανή αντικατάσταση των υαλονημάτων από φυσικές ίνες σε σύνθετο για συγκεκριμένη εφαρμογή (παλέτα μεταφοράς).

7.3 Αξιολόγηση Κύκλου Ζωής για παλέτα μεταφοράς από σύνθετο πολυμερούς με ενίσχυση υαλονημάτων / φυσικών ίνων

Τα τελευταία χρόνια παρατηρείται ένα αυξανόμενο ενδιαφέρον για τη χρήση φυσικών ίνων ως ενίσχυση σε πολυμερικά σύνθετα εξαιτίας του γεγονότος ότι λειτουργικά οι φυσικές ίνες είναι σε θέση να αντικαταστήσουν τα υαλονήματα που χρησιμοποιούνται παραδοσιακά σε εφαρμογές στη βιομηχανία, ενώ συγχρόνως αποτελούν ανανεώσιμες πρώτες ίνες με δυνατότητα βιοαποδόμησης. Συγκεκριμένα, παρουσιάζουν πλεονεκτήματα όπως το ότι έχουν υψηλό μέτρο ελαστικότητας, χαμηλή πυκνότητα και χαμηλό κόστος.

Συγκεκριμένα, παρουσιάζεται η σύγκριση δύο ολοκληρωμένων αξιολογήσεων κύκλου ζωής για συγκεκριμένη εφαρμογή (παλέτα μεταφοράς) όπως πραγματοποιήθηκε από τους Corbiere- Nicollier et al το 2001 [71]. Οι εφαρμογές αφορούν σε ένα σύνθετο από PP με ενίσχυση υαλονημάτων και σε ένα δεύτερο όπου τα υαλονήματα έχουν αντικατασταθεί από φυσικές ίνες (καλάμι china reed). Το PP είναι ότι φθηνό, ελαφρύ και ελατό πλαστικό, αλλά έχει μεγάλη αντοχή στη θραύση. Η ακαμψία και η αντοχή του βελτιώνονται με ενίσχυση υαλονήματος. Διαθέτει διαφάνεια και χρωματίζεται σε ποικιλία χρωμάτων. Το PP ανακυκλώνεται και μπορεί να αποτεφρωθεί για να αποδώσει την ενέργεια που περιέχει [35]. Οι παλέτες μεταφοράς χρησιμοποιούνται στη βιομηχανία για εύκολη και γρήγορη μεταφορά των προϊόντων. Το υλικό κατασκευής τους είναι κυρίως ξύλο ή πλαστικό. Το ξύλο παρόλα αυτά δεν θεωρείται κατάλληλο υλικό εξαιτίας του βάρους του, της τιμής του και του προβλήματος απόρριψης του μετά τη χρήση. Οι πλαστικές παλέτες θεωρούνται περιβαλλοντικά καλύτερες αλλά δεν διαθέτουν την αντοχή στον εφελκυσμό των ξύλων. Τα πολυμερικά σύνθετα δίνουν λύση στο πρόβλημα αυτό.

Εξαιτίας του γεγονότος ότι η υψηλή αντοχή και το χαμηλό βάρος τους είναι σημαντικά, για την κατασκευή τους χρησιμοποιούνται σύνθετα πλαστικού με
ενίσχυση ινών (υαλονημάτων). Οι τυπικές διαστάσεις μιας παλέτας είναι 110x90x14 cm (Εικ.7.2).

Η ΑΚΖ πραγματοποιείται προκειμένου να διαπιστωθεί αν οι φυσικές ίνες ως ενίσχυση σε σύνθετο πολυμερούς (PP) για παλέτα μεταφοράς επιβαρύνουν λιγότερο το περιβάλλον από ότι οι ίνες γυαλιού. Οι φάσεις της ΑΚΖ έχουν ως εξής:
7.3.1 Καθορισμός στόχων και πεδίου ενδιαφέροντος

Στόχοι της μελέτης αυτής είναι:

- Να διερευνηθεί αν η χρήση φυσικών ινών από καλάμι (china reed) αντι για ίνες γυαλιού ως ενίσχυση στο PP σε παλέτες μεταφοράς είναι συμφέρουσα από οικολογική άποψη.
- Να προσδιοριστούν οι περιβαλλοντικές παράμετροι και οι φάσεις στον κύκλο ζωής των παλετών μεταφοράς.
- Να μελετηθούν διάφορες μέθοδοι διαχείρισης των απορριμμάτων ώστε να επιλεγεί η βέλτιστη.
- Να προσδιοριστεί η ευαισθησία των αποτελεσμάτων της ΑΚΖ σε παράγοντες όπως η διάρκεια ζωής του προϊόντος, το ποσοστό σε ίνες, η απόσταση μεταφοράς.

Ως λειτουργική μονάδα λαμβάνεται μια πλαστική παλέτα μεταφοράς. Οι παλέτες κατασκευάζονται από πολυπροπυλένιο ενισχυμένο με υαλονήματα και εναλλακτικά με φυσικές ίνες από καλάμι. Η έρευνα γίνεται στην Ελβετία, όπου τα καλάμια χρησιμοποιούνται κυρίως για την παραγωγή ενέργειας. Μεγαλώνουν γρήγορα σε διάστημα 5 μηνών το καλοκαίρι και φτάνουν σε ύψος τα 4 μέτρα, παράγοντας 17-20 τόνους βιομάζας το χρόνο. Οι ίνες προκύπτουν μέσω διαδικασιών λείανσης και διαχωρισμού και αποτελούν το 70% κατά βάρος της πρώτης ύλης (το υπόλοιπο 30% είναι τα υπολείμματα της διαδικασίας παραγωγής των ινών).

Στον πρώτο τύπο παλέτας τα υλικά που χρησιμοποιούνται είναι πολυπροπυλένιο και ίνες από γυαλί. Αυτός ο τύπος παλέτας έχει διάρκεια ζωής 5 χρόνια. Στη δεύτερη περίπτωση χρησιμοποιείται πολυπροπυλένιο και φυσικές ίνες από καλάμι (china reed). Στην περίπτωση αυτή η διάρκεια ζωής δεν είναι γνωστή, υπολογίζεται όμως η ελάχιστη διάρκεια ζωής της παλέτας ώστε να είναι ανταγωνιστική σε σχέση με την παλέτα με υαλονήματα (3 χρόνια) [71]. Για τις ίνες από καλάμι, γνωστές είναι μόνο οι μηχανικές ιδιότητες του υλικού. Προκειμένου να μπορούμε να συγκρίνουμε τις δύο περιπτώσεις, οι δύο τύποι παλέτας θα πρέπει να έχουν ισοδύναμες μηχανικές ιδιότητες. Μια τυπική παλέτα από PP και υαλονήματα έχει βάρος 15 κιλά και περιέχει ποσοστό κατά βάρος σε ίνες 42%. Προκειμένου να δημιουργηθεί ένα σύνθετο από ίνες από καλάμι με ισοδύναμη ακαμψία (ανά μονάδα μάζας ινών) με αυτή του
σύνθετου από ίνες γυαλιού, υπολογίστηκε ότι η παλέτα θα ζυγίζει 11.8 κιλά και θα περιέχει 53% κατά βάρος σε φυσικές ίνες. Η υπόθεση για τον τρόπο διαχείρισης των παλετών μετά το τέλος του κύκλου ζωής του είναι η αποτέφρωση και στις δύο περιπτώσεις.

Τα όρια του συστήματος για την αξιολόγηση επιλέγονται έτσι ώστε να συμπεριλαμβάνουν όλες τις διαδικασίες που είναι απαραίτητες για πραγματοποίηση του κύκλου ζωής και οι οποίες είναι οι διαδικασίες παραγωγής, χρήσης και διαχείρισης των αποβλήτων και για τις δύο περιπτώσεις ενίσχυσης με ίνες γυαλιού και με φυσικές ίνες. Στο σύνθετο με υαλονήματα, οι ίνες γυαλιού είναι ανόργανες ενώ η μήτρα (δηλ. η ρητίνη) είναι οργανική και επομένως οι δύο αυτές συνιστώσες δεν αναπτύσσουν δεσμούς μεταξύ τους, εκτός κι αν η επιφάνεια των ίνων καλυφθεί με κατάλληλο επικαλυπτικό [11].

Στην περίπτωση των παλετών από ίνες china reed, το καλάμι καλλιεργείται, και μεταφέρεται σε μια αποθήκη. Εκεί διαχωρίζεται το χρήσιμο από το άχρηστο υλικό. Κατά την παραγωγή προστίθενται ουσίες που βοηθούν στην καλύτερη πρόσφυση μεταξύ του πολυπροπυλενίου και των φυσικών ίνων. Αυτό συμβαίνει διότι οι υδρόφιλες φυσικές ίνες δεν δημιουργούν κατάλληλη πρόσφυση με την υδρόφοβη μήτρα από PP. Η παραγωγή των ουσιών αυτών υπολογίζεται στο σύστημα. Και στις δύο περιπτώσεις των παλετών υπολογίζονται οι διαδικασίες παραγωγής των ίνων, η παραγωγή του πολυπροπυλενίου, η παραγωγή των παλετών, η χρήση τους μαζί με τη μεταφορά τους και ο τρόπος διαχείρισής τους μετά τη χρήση τους (Εικ.7.3).
Εικόνα 7.3 Όρια συστήματος (κατανάλωση ενέργειας) [71]

7.3.2 Καταγραφή των δεδομένων του κύκλου ζωής

Στη φάση αυτή γίνεται ποσοτική καταγραφή όλων των εκπομπών και όλων των πρώτων υλών και ενέργειας που χρησιμοποιούνται κατά τη διάρκεια ζωής κάθε παλέτας. Υπολογίζονται οι εκπομπές ουσιών σε αέρα, νερό και χώμα, οι ανανεώσιμες και μη ανανεώσιμες πρώτες ύλες καθώς και η κατανάλωση ενέργειας για κάθε παλέτα.
Από την εικόνα 7.3 φαίνεται ότε η συνολική κατανάλωση ενέργειας στην περίπτωση της παλέτας από σύνθετο με φυσικές ίνες είναι σημαντικά μικρότερη από την αντίστοιχη για σύνθετο με ίνες γυαλιού (683 MJ εξοικονόμηση ενέργειας ανά παλέτα). Το γεγονός αυτό οφείλεται σε τρεις παράγοντες. Οι ίνες γυαλιού καταναλώνουν περισσότερη ενέργεια για την παραγωγή τους από ότι οι ίνες από καλάμι. Το γεγονός ότι μειώθηκε το ποσοστό του πολυπροπυλενίου και αυξήθηκε το ποσοστό των ινών από καλάμι μείωσε τη συνολική κατανάλωση ενέργειας. Σε μικρότερο βαθμό, η μείωση του βάρους της παλέτας των φυσικών ινών σε σχέση με την παλέτα από υαλονήματα είχε σαν αποτέλεσμα τη μείωση της κατανάλωσης καυσίμων κατά τη μεταφορά.

Οι απαιτήσεις γης για την παραγωγή των φυσικών ινών είναι σημαντική, δηλαδή χρειάζονται περίπου 52 m² καλλιεργήσιμης γης για την παραγωγή μιας παλέτας. Οι εκπομπές ρύπων από μια παλέτα με ενίσχυση υαλονήματων γενικά είναι υψηλότερες. Σε αντίθεση με τις εκπομπές σε αέρα και νερό, οι εκπομπές στο έδαφος για τις παλέτες από φυσικές ίνες είναι υψηλότερες. Στην περίπτωση των φυσικών ινών κυριαρχούν οι εκπομπές ουσιών που προέρχονται από την καλλιέργεια τους και πρόκειται κυρίως για βαρέα μέταλλα. Κατά την παραγωγή τους, βαρέα μέταλλα όπως το κάδμιο, ο χαλκός, το νικέλιο και το κοβάλτιο απελευθερώνονται στο έδαφος (Εικ.7.4). Τα βαρέα μέταλλα έχουν αρνητικές επιπτώσεις στον άνθρωπο και στο περιβάλλον.
<table>
<thead>
<tr>
<th>Συστατικά</th>
<th>Μονάδες</th>
<th>Τυπικές ινές</th>
<th>Φυσικές ινές</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αέρας ουσιών</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maleic anhydride</td>
<td>(mg)</td>
<td>x</td>
<td>5.88</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>(μg)</td>
<td>84.1</td>
<td>57.8</td>
</tr>
<tr>
<td>Cd</td>
<td>(μg)</td>
<td>32.7</td>
<td>26.8</td>
</tr>
<tr>
<td>CO</td>
<td>(μg)</td>
<td>74.3</td>
<td>54.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>(μg)</td>
<td>73.1</td>
<td>42.0</td>
</tr>
<tr>
<td>Cr</td>
<td>(μg)</td>
<td>8.53</td>
<td>4.92</td>
</tr>
<tr>
<td>Cu</td>
<td>(μg)</td>
<td>45</td>
<td>28.6</td>
</tr>
<tr>
<td>Dimethylnitrosamine</td>
<td>(μg)</td>
<td>x</td>
<td>36.9</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>(μg)</td>
<td>x</td>
<td>38.7</td>
</tr>
<tr>
<td>H₂S</td>
<td>(μg)</td>
<td>80.6</td>
<td>28.3</td>
</tr>
<tr>
<td>HCl</td>
<td>(μg)</td>
<td>4.48</td>
<td>3.65</td>
</tr>
<tr>
<td>HF</td>
<td>(μg)</td>
<td>506</td>
<td>201</td>
</tr>
<tr>
<td>Hg</td>
<td>(μg)</td>
<td>1.48</td>
<td>0.68</td>
</tr>
<tr>
<td>Methane</td>
<td>(μg)</td>
<td>150</td>
<td>79.4</td>
</tr>
<tr>
<td>Mn</td>
<td>(μg)</td>
<td>36.6</td>
<td>24.3</td>
</tr>
<tr>
<td>N₂O</td>
<td>(μg)</td>
<td>1.96</td>
<td>2.2</td>
</tr>
<tr>
<td>NH₃</td>
<td>(μg)</td>
<td>0.123</td>
<td>11.3</td>
</tr>
<tr>
<td>Ni</td>
<td>(μg)</td>
<td>142</td>
<td>88.6</td>
</tr>
<tr>
<td>NMHC</td>
<td>(μg)</td>
<td>497</td>
<td>318</td>
</tr>
<tr>
<td>NO₂</td>
<td>(μg)</td>
<td>513</td>
<td>349</td>
</tr>
<tr>
<td>P</td>
<td>(μg)</td>
<td>5.19</td>
<td>2.27</td>
</tr>
<tr>
<td>Particles</td>
<td>(μg)</td>
<td>57.5</td>
<td>35.1</td>
</tr>
<tr>
<td>Pb</td>
<td>(μg)</td>
<td>195</td>
<td>56.2</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>(μg)</td>
<td>x</td>
<td>34.6</td>
</tr>
<tr>
<td>SO₄</td>
<td>(μg)</td>
<td>289</td>
<td>163</td>
</tr>
<tr>
<td>V</td>
<td>(μg)</td>
<td>1.16</td>
<td>0.731</td>
</tr>
<tr>
<td>Zn</td>
<td>(μg)</td>
<td>512</td>
<td>375</td>
</tr>
</tbody>
</table>

Εκπομπές στο έδαφος

Ασ	(μg)	447	264
Cd	(μg)	33.9	524
Co	(μg)	6.94	264
Cr	(μg)	5.61	9.97
Cu	(μg)	0.128	22.5
Fe	(μg)	2.24	1.32
Hg	(μg)	3.54	274
Mn	(μg)	44.8	26.4
Ni	(μg)	0.192	3.04
Pb	(μg)	46.9	34.2
Zn	(μg)	18.1	11.0

Εκπομπές στο νερό

| Ag | (μg) | 607 | 382 |
| Al | (μg) | 8.81 | 3.56 |
Εικόνα 7.4 Εκπομπές ρύπων σε αέρα, νερό και έδαφος [71]

Η καταγραφή των δεδομένων είναι σημαντική, δεν επαρκεί όμως ώστε να ταξινομηθούν τα αποτελέσματα και να γίνει σύγκριση των δύο εναλλακτικών περιπτώσεων. Για το λόγο αυτό είναι απαραίτητη η αξιολόγηση των επιπτώσεων του κύκλου ζωής για τις περιπτώσεις που εξετάζονται.

7.3.3 Αξιολόγηση των επιπτώσεων του κύκλου ζωής

Η αξιολόγηση των επιπτώσεων στο περιβάλλον προσφέρει τη δυνατότητα σύγκρισης των στοιχείων που συγκεντρώθηκαν από την καταγραφή των δεδομένων του κύκλου ζωής. Αποτελείται από τρία μέρη, την ταξινόμηση των δεδομένων σε κατηγορίες ανάλογα με τον τρόπο που επιβαρύνουν το περιβάλλον, τον χαρακτηρισμό, όπου ποσοτικοποιούνται οι επιπτώσεις ανά κατηγορία και από τη στάθμιση, όπου υπολογίζεται η σχετική επίδραση που έχει κάθε κατηγορία. Η κύρια μεθοδολογία αξιολόγησης που χρησιμοποιείται στη φάση αυτή είναι η μεθοδολογία Critical Surface- Time method (CST95) ενώ η CML 92, η Ecopoints και η Eco-indicator 95
εφαρμόζονται για τον έλεγχο της αξιοπιστίας των αποτελεσμάτων που προκύπτουν. Οι μεθοδολογίες αυτές χρησιμοποιούνται κατά τη διάρκεια της ΑΚΖ και αποτελούν λογισμικά αξιολόγησης του περιβαλλοντικού αντίκτυπου ενός προϊόντος ή υλικού, ως προς συγκεκριμένες κατηγορίες. Διαφέρουν μεταξύ τους ως προς τις κατηγορίες επιπτώσεων. Η μεθοδολογία Eco-indicator 95 προσφέρει επιπλέον πληροφορίες για την αποβολή βαρών μετάλλων και την καρκινογένεση. Η μεθοδολογία Ecopoints εξάγει ως αποτέλεσμα μια μοναδική τιμή για κάθε υλικό που χρησιμοποιείται για μια συγκεκριμένη εφαρμογή. Η τιμή αυτή προκύπτει με αναγωγή όλων των δεικτών στην ίδια μονάδα μέτρησης. Η μεθοδολογία CST95 παρέχει ολοκληρωμένα αποτελέσματα για κατηγορίες όπως η τοξικότητα στον άνθρωπο, στη γη και στο νερό, το φαινόμενο του θερμοκηπίου, ο ευτροφισμός και η κατανάλωση ενέργειας. Δίνει λεπτομερή στοιχεία για τα βαρέα μετάλλα που αποβάλλονται στο έδαφος. Τα αποτελέσματα της μεθοδολογίας φαίνονται στην εικόνα 7.5.

Η μεθοδολογία CST95 δίνει λεπτομερή στοιχεία για τα βαρέα μετάλλα που αποβάλλονται στο έδαφος. Τα αποτελέσματα της μεθοδολογίας φαίνονται στην εικόνα 7.5.

![Εικόνα 7.5 Αποτελέσματα μεθοδολογίας CST95 για παλέτες που αποτεφρώθηκαν και που απορρίφθηκαν (71)](image)

Όπως φαίνεται, οι παλέτες από φυσικές ίνες δίνουν καλύτερα αποτελέσματα στις περισσότερες από τις κατηγορίες, όπως η τοξικότητα στον άνθρωπο, η μείωση του όξινου και το φαινόμενο του θερμοκηπίου. Ως προς τις μεθόδους διαχείρισης του περιβάλλοντος, η αποτέφρωση είναι προτιμότερη εξαιτίας των υψηλών επιπτώσεων.
που έχει η απόρριψή τους στο περιβάλλον για τα υδρόβια οικοσυστήματα και τον ευτροφισμό (Εικόνα 7.5).

Η ανακύκλωση των παλετών δίνει επιπλέον πλεονεκτήματα αφού μειώνονται οι εκπομπές που προέρχονται από την απόρριψή τους (αποτέφρωση) και επιπλέον οι εκπομπές κατά τη διάρκεια παραγωγής (Εικ. 7.6).

Εικόνα 7.6 Κατανάλωση ενέργειας σε σχέση με το ποσοστό ανακύκλωσης [71]

7.3.4 Ερμηνεία

Ανάλυση ευαισθησίας

Ως προς τη διάρκεια ζωής της παλέτας, είναι δύσκολο να προσδιοριστεί άμεσα για τις παλέτες από φυσικές ίνες εξαιτίας του γεγονότος ότι δεν υπάρχουν αρκετές πληροφορίες για την ανθεκτικότητά τους. Ως μια πρώτη προσέγγιση, θεωρήθηκε ως διάρκεια ζωής τα 5 χρόνια. Αν όμως η διάρκεια ζωής τους είναι πολύ μικρότερη, θα αυξανόταν ο αριθμός των παλετών και έτσι θα έχαναν το πλεονέκτημα ως προς το περιβάλλον. Για την αρχική κατανάλωση ενέργειας, η ελάχιστη διάρκεια ζωής για τις παλέτες με φυσικές ίνες ούτως ώστε να είναι συγκρίσιμες με τις παλέτες υαλονημάτων υπολογίζεται περίπου στα 2.2 χρόνια. Ως προς τις περιβαλλοντικές επιπτώσεις, η ελάχιστη διάρκεια ζωής των παλετών προκειμένου να διατηρήσουν το περιβαλλοντικό πλεονέκτημα είναι περίπου 3 χρόνια.
Ως προς τη σύνθεση, τα δεδομένα της ΑΚΖ αλλάζουν καθώς μεταβάλλεται η αναλογία των συστατικών. Φαίνεται όταν η κατανάλωση ενέργειας μειώνεται όταν αυξάνεται το ποσοστό σε ίνες και όταν η μεγαλύτερη κατανάλωση ενέργειας γίνεται κατά την παραγωγή του πολυπροπυλενίου (Εικ.7.7). Επομένως μια πιθανή αντικατάστασή του είτε από ίνες γυαλιού είτε από φυσικές ίνες θα ήταν συμφέρουσα, εκτός από την περίπτωση που η απόσταση που θα έπρεπε να διανύθει κατά τη διάρκεια ζωής της παλέτας ήταν πολύ μεγάλη, οπότε και θα ήταν ασύμφορη η αντικατάσταση του πολυπροπυλενίου από ίνες γυαλιού, εξαιτίας του μεγάλου βάρους τους.

![Diagram](image.png)

Εικόνα 7.7 Σχέση μεταξύ κατανάλωσης ενέργειας και μέτρου ελαστικότητας για ίνες από γυαλί και φυσικές ίνες [71]

Πηγές ασαφειών

Προκειμένου να πραγματοποιηθεί μια ΑΚΖ, αναλύεται ο κύκλος ζωής του προϊόντος που μελετάται και μόνο οι διαδικασίες που είναι σαφείς λαμβάνονται υπόψη. Οι υπόλοιπες διαδικασίες παραβλέπονται. Για πιο αξιόπιστα αποτελέσματα, η διαδικασία παραγωγής παλετών από φυσικές ίνες θα έπρεπε να είναι περισσότερο λεπτομερής. Επίσης, τα δεδομένα προέρχονται από διάφορες πηγές και έχουν υπολογιστεί με διαφορετικό τρόπο, που σημαίνει ότι δεν έχουν την ίδια ακρίβεια.
Επιπλέον, για κάποιες διαδικασίες που δεν υπήρξαν διαθέσιμα δεδομένα, χρησιμοποιήθηκαν παρόμοια υλικά προσεγγιστικά.

7.3.5 Αποτελέσματα

Η χρήση ενός από καλάμι ως ενίσχυση σε σύνθετα πλαστικά αποδεικνύεται ότι είναι συμφέρουσα ως προς την επίδραση στο περιβάλλον. Προκειμένου να υπάρξει μεγαλύτερο πλεονέκτημα ως προς το περιβάλλον και να προκύψει πλήρως βιοδιασπόμενο σύνθετο, μια πιθανή λύση θα ήταν η αντικατάσταση του υλικού μήτρας από ένα φυσικό ή βιοδιασπόμενο πολυμερές.

7.4 Μελέτες αξιολόγησης κύκλου ζωής για βιοδιασπόμενα πολυμερή

Τα τελευταία χρόνια έχουν πραγματοποιηθεί αξιολογήσεις κύκλου ζωής για βιοδιασπόμενα πολυμερή υλικά, αλλά είναι σχετικά περιορισμένες σε σχέση με τον ενδιαφέρον που έχουν παρουσιάσει τα βιοδιασπόμενα πολυμερή ως υλικά τα τελευταία χρόνια. Κάποιες από τις αξιολογήσεις αυτές ορίζουν ως λειτουργική μονάδα κάποια συγκεκριμένη εφαρμογή, για παράδειγμα μια παλέτα μεταφοράς ή μια συσκευασία φαγητού ενώ κάποιες άλλες ορίζουν ως λειτουργική μονάδα κάποια ποσότητα υλικού, για παράδειγμα 1 kg υλικού πολυμερούς. Στόχος εδώ είναι η επισκόπηση των αποτελεσμάτων και η συγκέντρωση δεδομένων από ολοκληρωμένες αξιολογήσεις που έχουν πραγματοποιηθεί για βιοδιασπόμενα πολυμερή και πολυμερικά σύνθετα με φυσικές ίνες, κυρίως ως προς την κατανάλωση ενέργειας και την αποβολή αερίων του θερμοκηπίου. Τα υλικά που παρουσιάζουν ενδιαφέρον και για τα οποία έχουν πραγματοποιηθεί ολοκληρωμένες ΑΚΖ είναι το θερμοπλαστικό άμυλο, τα μίγματα από άμυλο και συνθετικά βιοδιασπόμενα πολυμερή (mater-bi), το PLA, τα PHAs, η PVOH καθώς και οι φυσικές ίνες και τα σύνθετα με ενίσχυση φυσικών ινών.

7.4.1 Θερμοπλαστικό άμυλο (TPS)

Για το θερμοπλαστικό άμυλο έχουν πραγματοποιηθεί ΑΚΖ όπου γίνεται σύγκριση με πλαστικά όπως το LDPE, και έχει διαπιστωθεί ότι το θερμοπλαστικό άμυλο αποδίδει
καλύτερα αποτελέσματα σε όλες τις κατηγορίες σε σχέση με το LDPE, εκτός από τον ευτροφισμό (Εικ.7.8) [73].

Το δέομα ανεφεύρετο για 100 καλλιέργεια	Κατανάλωση ενέργειας (MJ)	GHG εκπομπές [kg CO₂ eq.]	Ζημιές ατμοσφαιρικού [ρήχης / km²]	Ακολουθία [κατά [%] δυσμά οξείας]	Ευτροφισμός [κατά [%] δυσμά οξείας]	Εκτόξευση [κατά [%] δυσμά οξείας]	Σεξιλινάζη [κατά [%] δυσμά οξείας]	Δεπόστε & διαχείση [10⁰ EPS]*	
TPS (60% ΜΒΦ, 20% διασώρισμα)	2560 ± 5%	4.07 ± 20%	20 ± 40%	1.09 ± 5%	0.47 ± 40%	2.8 ± 55%	180 ± 15%	5.1 ± 10%	
TPS (100% διασώρισμα)	2540 ± 5%	11.4 ± 15%	0.60 ± 20%	1.06 ± 5%	0.47 ± 40%	2.8 ± 55%	180 ± 15%	0.72 ± 10%	
LDPE (60% ΜΒΦ, 20% διασώρισμα)	9170 ± 5%	520 ± 20%	70 ± 60%	1.74 ± 5%	0.11 ± 5%	4.6 ± 55%	860 ± 10%	5.5 ± 5%	
Ratio (1)/(3)	28%	23%	36%	29%	63%	427%	61%	21%	93%

*EPS: Environmental point system

Εικόνα 7.8 Αξιολόγηση Κύκλου Ζωής για θερμοπλαστικό άμυλο-σύγκριση με LDPE [73]

λαμβάνοντας υπόψη μόνο την κατανάλωση ενέργειας και την εκπομπή CO₂ για την παραγωγή διαφόρων τύπων θερμοπλαστικού αμύλου, προκύπτει εξοικονόμηση ενέργειας 28-55 MJ/kg πλαστικού και 1.4-3.9 kgCO₂/kg πλαστικού (Εικ. 7.9). Η μείωση σε ενεργειακές απαιτήσεις για το άμυλο φτάνει σε ποσοστό 25-75% σε σχέση με το PE, ενώ στις εκπομπές αερίων θερμοκηπίου υπάρχει μείωση 20-80% [73]. Σύμφωνα με τη μελέτη του Dinkel et al το 1996, για την παραγωγή και απόρριψη ενός κιλού θερμοπλαστικού αμύλου απαιτείται ενέργεια 25.4 MJ και αποβάλλεται CO2 1.14-1.2 kg CO₂eq επιλέγοντας την κομπόστηση ως μέθοδο απόρριψης (Εικ. 7.9) [73].

<table>
<thead>
<tr>
<th>Τύπος πλαστικού</th>
<th>Ποσοστό παραγωγής θερμοπλαστικού</th>
<th>Κατανάλωση ενέργειας για παραγωγή πλαστικού</th>
<th>Εκπομπές διοξειδίου του άνθρακα για την παραγωγή και απόρριψη πλαστικού</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS ²)</td>
<td>0%</td>
<td>25.4</td>
<td>1140</td>
</tr>
<tr>
<td>TPS/polyvinyl alcohol ³)</td>
<td>15%</td>
<td>24.9</td>
<td>1730</td>
</tr>
<tr>
<td>TPS/polycaprolactone ³)</td>
<td>52.5%</td>
<td>48.3</td>
<td>3360</td>
</tr>
<tr>
<td>TPS/polycaprolactone ³)</td>
<td>60%</td>
<td>52.3</td>
<td>3600</td>
</tr>
<tr>
<td>LDPE ⁴)</td>
<td>100%</td>
<td>80.6</td>
<td>4840</td>
</tr>
</tbody>
</table>

Εικόνα 7.9 Δείκτες απόδοσης από ΑΚΖ που έχουν πραγματοποιηθεί για θερμοπλαστικό άμυλο [73]
Από ΑΚΖ που πραγματοποιήθηκε για το θερμοπλαστικό υλικό mater-bi, βγήκε το συμπέρασμα ότι μεμβράνες και αφρώδεις συσκευασίες από mater-bi είναι λιγότερο επιβλαβείς οικολογικά και ενεργειακά κατά την παραγωγή τους από το PS ή από το PE, παρόλο που το βάρος τους είναι μεγαλύτερο [30]. Επίσης, οι χάρτινες σακούλες καταναλώνουν πολύ περισσότερη ενέργεια από τις σακούλες mater-bi κατά την παραγωγή τους, εξαιτίας του μεγαλύτερου βάρους τους. Σε εφαρμογή του αμύλου στην αυτοκινητοβιομηχανία, πραγματοποιήθηκε παραγωγή ελαστικών με ποσοστό αμύλου στη σύνθεσή τους. Τα ελαστικά αυτά υπέρέχουν λειτουργικά σε σχέση με τα κοινά ελαστικά ως προς την ελεγχόμενη ακαμψία, τη βελτιωμένη συμπεριφορά σε βρεγμένο οδόστρωμα, το χαμηλότερο βάρος και την μικρότερη αντίσταση κύλισης, με ταυτόχρονη μείωση των επιπτώσεων στο περιβάλλον (Εικ. 7.10).

Εικόνα 7.10 Μείωση των περιβαλλοντικών επιπτώσεων μετά τη χρήση αμυλούρχων πολυμερών στη σύσταση για ελαστικά αυτοκινήτων [73]

<table>
<thead>
<tr>
<th>Μείωση CO2 σε σχέση με συμβατικά λάστιχα</th>
<th>20% αντικατάσταση άνθρακα</th>
<th>50% αντικατάσταση άνθρακα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χρήση πρώτου υλών από αμύλο</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Μείωση βάρους λάστιχων</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>Μείωση στην αντίσταση κύλισης</td>
<td>3.35</td>
<td>8.92</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>3.53</td>
<td>9.52</td>
</tr>
</tbody>
</table>

7.4.2 PHA

Για τα PHA, κυρίως για το PHB, δεν υπάρχει ολοκληρωμένη ΑΚΖ μέχρι στιγμής αλλά μόνο μελέτες για τις ενεργειακές απαιτήσεις παραγωγής και τις εκπομπές διοξειδίου του άνθρακα. Από τις μελέτες αυτές φαίνεται ότι οι ενεργειακές απαιτήσεις των PHA εξαρτώνται από τον τρόπο παραγωγής τους, αν δηλαδή παράγονται με ζύμωση από βακτήρια ή απευθείας στα φυτά [73]. Η διαδικασία της
ζύμωσης έχει λιγότερες ενεργειακές απαιτήσεις από την παραγωγή απευθείας στα φυτά.

Εικόνα 7.11 Ενεργειακές απαιτήσεις κατά την παραγωγή των PHAs και συγκεκριμένα του PHB συγκριτικά με συμβατικά πλαστικά [74]

Οι ενεργειακές απαιτήσεις και ιδιαίτερα οι εκπομπές διοξειδίου του άνθρακα για το PHB και γενικά για τα PHA μέχρι στιγμής είναι αισθητά μειωμένες σε σχέση με τα κοινά πλαστικά, όπως το PP και το PET (Εικ.7.11) [74].

7.4.3 PLA

Το PLA πλεονεκτεί ως προς τα συνθετικά πολυμερή στην κατανάλωση ενέργειας και στο γεγονός ότι χρησιμοποιεί ανανεώσιμες πηγές ενέργειας και ανανεώσιμες πρώτες ύλες [40]. Στην αναλυτική ΑΚΖ του PLA [75], εξετάζεται ως εφαρμογή μια συσκευασία φαγητού και συγκρίνεται με πλαστικά όπως το PP, το PS και το PET. Τα αποτελέσματα δείχνουν ότι το PLA πλεονεκτεί σε σχέση με όλα τα κοινά πλαστικά
ως προς την κατανάλωση ορυκτών πρώτων υλών, τις εκπομπές αερίων του θερμοκηπίου και του νέφους. Ως προς τον ευτροφισμό σε υδάτινο περιβάλλον, το PLA μειονεκτεί σε σχέση με τα κοινά πλαστικά. Η τοξικότητα του PLA σε σχέση με το PS και το PP αποτελεί μειονέκτημα σε θαλάσσιο περιβάλλον. Στο χώμα η κομποστοποίηση του PLA αποδεικνύεται οφέλιμη. Τέλος, γίνεται έρευνα για τις μεθόδους διαχείρισης των συσκευασιών μετά τη χρήση τους και η ανακύκλωση με την κομποστοποίηση αποτελεί τις βέλτιστες μεθόδους διαχείρισης μετά το τέλος ζωής του PLA.

Εικόνα 7.12 Ενεργειακές απαιτήσεις κατά την παραγωγή PLA και συνθετικών πολυμερών [40]
Εικόνα 7.13 Εκπομπές αερίων θερμοκηπίου κατά την παραγωγή και απόρριψη PLA και συνθετικών πολυμερών [40]

Για την παραγωγή 1 kg PLA οι ενεργειακές απαιτήσεις κυμαίνονται μεταξύ 47-74 MJ (Εικ. 7.12). Ως προς την εκπομπή αερίων του θερμοκηπίου, το PLA είναι ουδέτερο διότι την ποσότητα αερίων που αποβάλει κατά την απόρριψή του την δεσμεύει κατά την παραγωγή του σχεδόν εξ ολοκλήρου, άλλες φορές παρουσιάζοντας αρνητική εκπομπή αερίων και άλλες φτάνοντας στο +0.8 kgCO₂/kg (Εικ. 7.13) [40].

7.4.4 Σύνθετα με φυσικές ίνες

Σύνθετα ινών σε πολυμερική μήτρα χρησιμοποιούνται σε εφαρμογές όπου το χαμηλό βάρος και η ακαμψία παίζουν σημαντικό ρόλο, όπως για παράδειγμα στην αυτοκινητοβιομηχανία και στις μεταφορές.
Εικόνα 7.14 Σύγκριση ενεργειακών απαιτήσεων για παραγωγή υαλονήματων και ινών από λινό [73]

<table>
<thead>
<tr>
<th>Ενεργειακές απαιτήσεις (MJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υαλονήματα</td>
</tr>
<tr>
<td>Πρώτες ύλες</td>
</tr>
<tr>
<td>Ανέμιστη</td>
</tr>
<tr>
<td>Μεταφορά</td>
</tr>
<tr>
<td>Τήξη</td>
</tr>
<tr>
<td>Ινοποίηση</td>
</tr>
<tr>
<td>Πραγαγωγή υλικού</td>
</tr>
<tr>
<td>Σύνολο</td>
</tr>
<tr>
<td>1.7</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.6</td>
</tr>
<tr>
<td>21.5</td>
</tr>
<tr>
<td>5.9</td>
</tr>
<tr>
<td>23.0</td>
</tr>
<tr>
<td>54.7</td>
</tr>
</tbody>
</table>

Από μελέτες που έχουν πραγματοποιηθεί [76], αποδεικνύεται ότι οι φυσικές ίνες (κάνναβη, λινό, καλάμι), υπερέχουν σε σχέση με τα υαλονήματα ως ενίσχυση στα σύνθετα από πλαστικό για τρεις λόγους:

1. Η παραγωγή φυσικών ινών έχει λιγότερες επιπτώσεις επιπτώσεις στο περιβάλλον από ότι η παραγωγή υαλονήματων.

2. Τα σύνθετα από φυσικές ίνες απαιτούν μεγαλύτερη περιεκτικότητα σε ινές επομένως αναγκαστικά μειώνουν την ποσότητα πολυμερούς που χρειάζεται να παραχθεί.

3. Τα σύνθετα από φυσικές ίνες είναι ελαφρύτερα που σημαίνει ότι μειώνουν την κατανάλωση καυσίμων και την εκπομπή ρύπων στο περιβάλλον.

Η εξοικονόμηση ενέργειας από τις φυσικές ίνες φτάνει σε ποσοστό το 45-50% εν συγκρίσει με τα υαλονήματα (Εικ.7.14) [71,73]. Υπάρχουν όμως και μειονεκτήματα στη χρήση φυσικών ινών. Η χρήση λιπασμάτων κατά την καλλιέργεια έχει ως αποτέλεσμα την αποβολή φωσφορικών και νιτρικών αλάτων στο νερό που οδηγεί στον ευτροφισμό, ενώ η περιβαλλοντική υπεροχή των ινών μπορεί να υποβαθμιστεί από τον περιορισμένο χρόνο χρήσης του προϊόντος (Εικ.7.15).

Συμπερασματικά, τα βιοδιασπώμενα πολυμερή και οι φυσικές ίνες εξοικονομούν περίπου 20% από την κατανάλωση ενέργειας και εκπομπή διοξειδίου του άνθρακα σε σχέση με τα κοινά πλαστικά. Σε ορισμένες περιπτώσεις, όπου το θερμοπλαστικό άμυλο και τα σύνθετα με φυσικές ίνες, η εξοικονόμηση ενέργειας χιπερνάει το 50% (Εικ.7.15, 16, 17) [73].
<table>
<thead>
<tr>
<th>Υλικό/Περιβαλλοντικός Δείκτης</th>
<th>ABS copolymer</th>
<th>Hemp-Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ενέργεια (MJ)</td>
<td>132</td>
<td>73</td>
</tr>
<tr>
<td>CO₂, εκκομιά (kg)</td>
<td>4.97</td>
<td>4.19</td>
</tr>
<tr>
<td>Μεθάνιο (g)</td>
<td>17.43</td>
<td>16.96</td>
</tr>
<tr>
<td>SO₂ (g)</td>
<td>17.54</td>
<td>10.70</td>
</tr>
<tr>
<td>NOₓ (g)</td>
<td>14.14</td>
<td>18.64</td>
</tr>
<tr>
<td>CO (g)</td>
<td>4.44</td>
<td>2.14</td>
</tr>
<tr>
<td>Φωσφορικό όλας στο νερό (g)</td>
<td>0</td>
<td>0.09</td>
</tr>
<tr>
<td>Νιτρικό όλας στο νερό (g)</td>
<td>0.08</td>
<td>12.05</td>
</tr>
</tbody>
</table>

Εικόνα 7.15 ΑΚΖ από την παραγωγή ενός ταμπλό αυτοκινήτου [73]

<table>
<thead>
<tr>
<th>Περιβαλλοντικός Δείκτης</th>
<th>Παλέτα υαλονήματος</th>
<th>Παλέτα ινών καλαμιού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συνολική κατανάλωση ενέργειας (MJ)</td>
<td>1400</td>
<td>717</td>
</tr>
<tr>
<td>Εκπομπές διοξείδιο του άνθρακα (kg)</td>
<td>73.1</td>
<td>42</td>
</tr>
<tr>
<td>Μονοξείδιο άνθρακα (g)</td>
<td>74.3</td>
<td>54.6</td>
</tr>
<tr>
<td>NOₓ, εκπομπές (g)</td>
<td>513</td>
<td>349</td>
</tr>
<tr>
<td>Εκπομπές ΣΟₓ στον αέρα (g)</td>
<td>289</td>
<td>163</td>
</tr>
<tr>
<td>Υδάτινο ρύπαν με BOD (mg)</td>
<td>414</td>
<td>266</td>
</tr>
<tr>
<td>Υδάτινο ρύπαν με nitrates (g)</td>
<td>1.72</td>
<td>1.53</td>
</tr>
<tr>
<td>Υδάτινο ρύπαν με phosphates (g)</td>
<td>0.59</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Εικόνα 7.16 Σύγκριση ΑΚΖ για σύνθετο με υαλονήματα και ίνες καλαμιού σε παλέτα μεταφοράς [71]

<table>
<thead>
<tr>
<th>Κατηγορίες</th>
<th>Υαλονήματα</th>
<th>Φυσικές ίνες</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επικινδυνότητα κατά την εισπνοή</td>
<td>Ναι</td>
<td>Όχι</td>
</tr>
<tr>
<td>Κόστος</td>
<td>2.5$/kg</td>
<td>0.30-0.55 $/kg</td>
</tr>
<tr>
<td>Ανακύκλωση</td>
<td>Όχι</td>
<td>Ναι</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας</td>
<td>Υψηλή</td>
<td>Χαμηλή</td>
</tr>
<tr>
<td>Επιπλέον αποβολή CO₂</td>
<td>Ναι</td>
<td>Όχι</td>
</tr>
<tr>
<td>Πυκνότητα</td>
<td>Υψηλή (2.5 g/cm³)</td>
<td>Χαμηλή (1.2-1.6 g/cm³)</td>
</tr>
<tr>
<td>Ανανεώσιμη ύλη</td>
<td>Όχι</td>
<td>Ναι</td>
</tr>
<tr>
<td>Βιοδιάσπαση</td>
<td>Όχι</td>
<td>Ναι</td>
</tr>
<tr>
<td>Ενεργειακή κατανάλωση</td>
<td>48.33 MJ/kg</td>
<td>3.6 MJ/kg (china reed)</td>
</tr>
<tr>
<td>Διαχωρισμός</td>
<td>Δύσκολος</td>
<td>Εύκολος</td>
</tr>
</tbody>
</table>

Πίνακας 7.1 Σύγκριση υαλονήματος και φυσικών ίνων
<table>
<thead>
<tr>
<th>Περιβαλλοντικός αντίκτυπος</th>
<th>Υαλονήματα</th>
<th>China resd</th>
<th>Ερυθρο υαλονήματα</th>
<th>ABS</th>
<th>Polypropylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χρήση ενέργειας (MJ/kg)</td>
<td>48.33</td>
<td>3.64</td>
<td>140.71</td>
<td>95.02</td>
<td>77.19</td>
</tr>
<tr>
<td>Εσωτερικές διοξείδια (kg/kg)</td>
<td>2.04</td>
<td>0.66</td>
<td>5.90</td>
<td>3.10</td>
<td>1.85</td>
</tr>
<tr>
<td>CO emissions (g/kg)</td>
<td>0.80</td>
<td>0.44</td>
<td>2.20</td>
<td>3.80</td>
<td>0.72</td>
</tr>
<tr>
<td>SO₂ emissions (g/kg)</td>
<td>8.79</td>
<td>1.23</td>
<td>19.00</td>
<td>10.00</td>
<td>12.94</td>
</tr>
<tr>
<td>NOₓ emissions (g/kg)</td>
<td>2.93</td>
<td>1.07</td>
<td>35.00</td>
<td>11.00</td>
<td>9.57</td>
</tr>
<tr>
<td>Παράγοντες (g/kg)</td>
<td>1.04</td>
<td>0.24</td>
<td>15.0</td>
<td>2.90</td>
<td>1.48</td>
</tr>
<tr>
<td>BOD to water (mg/kg)</td>
<td>1.75</td>
<td>0.36</td>
<td>1200</td>
<td>33</td>
<td>33.94</td>
</tr>
<tr>
<td>COD to water (mg/kg)</td>
<td>18.84</td>
<td>2.27</td>
<td>51.000</td>
<td>22.00</td>
<td>178.92</td>
</tr>
<tr>
<td>Nitrates to water (ppm)</td>
<td>14.00</td>
<td>24481</td>
<td>1</td>
<td>71</td>
<td>18.78</td>
</tr>
<tr>
<td>Phosphates to water (mg/kg)</td>
<td>-43.06</td>
<td>233.6</td>
<td>220</td>
<td>120</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Εικόνα 7.17 Σύγκριση υαλονημάτων- φυσικών ινών [76]

7.4.5 Πετροχημικά βιοδιασπόμενα πολυμερή

Οι αξιολογήσεις κύκλου ζωής που έχουν πραγματοποιηθεί για βιοδιασπόμενα πολυμερή με πετροχημική προέλευση (PVOH, PCL) είναι χρήσιμες γιατί παρέχουν πληροφορίες για την κατανάλωση ενέργειας παραγωγής για ένα 1 kg πρώτης ύλης καθώς και για την ποσότητα αερίων του θερμοκηπίου που αποβάλλονται κατά την παραγωγή και απόρριψη.

Συγκεκριμένα, για την πολυκαπρολακτόνη (PCL) η κατανάλωση ενέργειας που απαιτείται για την παραγωγή 1 kg πλαστικού κυμαίνεται μεταξύ 77-83 MJ ενώ κατά την παραγωγή και απόρριψη 1 kg πολυκαπρολακτόνης αποβάλλονται 3.1-5.7 kgCO₂eq/kg, θεωρώντας ότι μετά τη χρήση του το υλικό αποτεφρώνεται [76]. Για την PVOH, οι ενεργειακές απαιτήσεις για την παραγωγή 1 kg υλικού φτάνουν τα 58-102 MJ ενώ η αποβολή αερίων θερμοκηπίου φτάνει τα 2.7-4.3 kgCO₂eq/kg, έχοντας εφαρμόσεις ως μέθοδο διαχείρισης απορριμμάτων την αποτέφρωση (Εικ. 7.18) [76]. Η εφαρμογή της κομποστοποίησης ως μέθοδο διαχείρισης απορριμμάτων είναι αναμενόμενο να έχει ακόμη καλύτερα αποτελέσματα.
Το παρακάτω στοιχείο περιλαμβάνει στοιχεία από τις ΑΚΖ για συνθετικά και βιοδιασπώμενα πλαστικά για εμπορικά προϊόντα.

<table>
<thead>
<tr>
<th>Κωδικός ΑΚΖ</th>
<th>Συστάσεις</th>
<th>Ελλείμματα</th>
<th>Περιεχόμενο</th>
<th>Επιπλέον Στοιχεία</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Παρατηρήστε τα σχετικά στοιχεία για κάθε εμπορικό προϊόν και προσέξτε τις διαφορές στην περιέχομενο.
ΚΕΦΑΛΑΙΟ 8

ΜΕΛΕΤΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΣΥΝΘΕΤΟΥ ΜΕ ΕΝΙΣΧΥΣΗ ΥΑΛΟΝΗΜΑΤΩΝ ΑΠΟ ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ

8.1 Αξιολόγηση Κύκλου Ζωής

Σύμφωνα με την ΑΚΖ για παλέτα μεταφοράς [71] που αναπτύχθηκε στο προηγούμενο κεφάλαιο, η αντικατάσταση των υαλονημάτων από φυσικές ines china reed αποδεικνύεται συμφέρουσα ως προς τις περιβαλλοντικές επιπτώσεις που έχει η κατανάλωση ενέργειας και η εκπομπή βλαβερών ουσιών κατά την παραγωγή, χρήση και απόρριψή τους. Σκοπός του παρόντος κεφαλαίου είναι να ερευνηθεί κατά πόσο ενδεικνύεται η αντικατάσταση των υαλονημάτων από διάφορους τύπους βιοδιασπώμενον ivon στην Κάτω πολυμερική μήτρα από PP, αλλά και η αντικατάσταση της μήτρας από βιοδιασπώμενα πολυμερή.

Καθορίζοντας του στόχους και τα πεδία ενδιαφέροντος για τη συγκεκριμένη μελέτη, θεωρούμε ως εφαρμογή την απόδοση του σύνθετου υλικού σε κάμψη, έχοντας ως σχεδιαστική απαιτήση την ελαχιστοποίηση της γραμμής, η ελαχιστοποίηση της γραμμής επιλέγεται ως σχεδιαστική απαιτήση διότι με τον τρόπο αυτό επιτυγχάνεται λιγότερη κατανάλωση ενέργειας και πρώτων υλών κατά την παραγωγή αλλά και κατά τη χρήση του προϊόντος. Λαμβάνουμε ως λειτουργική μονάδα 1 kg ισοδύναμου σύνθετου5 γιατί αποτελεί ένα αποτελεσματικό μέτρο σύγκρισης στις περισσότερες ΑΚΖ και με τον τρόπο αυτό το ενδιαφέρον εστιάζεται στο υλικό της εφαρμογής και όχι στην ίδια την εφαρμογή. Η λειτουργική μονάδα (1 kg) αποτελεί το μέτρο σύγκρισης για κάθε μια από τις ξεχωριστές περιπτώσεις που θα εξεταστούν. Τα όρια του συστήματος, ως προς την ενεργειακή κατανάλωση, περιλαμβάνουν τις φάσεις εξόρυξης των πρώτων υλών και παραγωγής των υλικών. Ως προς την εκπομπή αερίων του θερμοκηπίου, οι όρια του συστήματος περιλαμβάνεται επιπλέον η φάση

5 Ως ισοδύναμο σύνθετο ως προς το όποιο ανταποκρίνεται στις ίδιες σχεδιαστικές απαιτήσεις με κάποιο πρότυπο. Η άννοια θα εξηγηθεί διεξοδικά στην συνέχεια του κεφαλαίου.
της απόρριψης, που για τα βιοδιασπώμενα σύνθετα προτιμότερη μέθοδος θεωρείται η κομποστοποίηση ενώ για τα συνθετικά υλικά επιλέγεται η αποτέφρωση ή η ανακύκλωση σε όσες περιπτώσεις είναι εφικτό. Τα στοιχεία που συγκεντρώθηκαν για καθένα από τα υλικά έχουν προέρχονται από διαφορετικές ΑΚΖ, και σε κάθε ΑΚΖ εφαρμόζεται διαφορετική μέθοδος διαχείρισης απορριμμάτων (αποτέφρωση, κομποστοποίηση). Το γεγονός αυτό προσδίδει ένα βαθμό ασάφειας στα δεδομένα, που όμως δεν ανατρέπει τα γενικά αποτελέσματα της αξιολόγησης.

<table>
<thead>
<tr>
<th>Μητρικές φάσεις</th>
<th>Πυκνότητα (g/cm³)</th>
<th>Μέτρο ελαστικότητας (GPa)</th>
<th>Κατανάλωση ενέργειας (MJ/kg)</th>
<th>Εκπομπή CO₂ ανά κιλό (kg CO₂/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>0.9</td>
<td>2.5</td>
<td>77.19</td>
<td>1.9</td>
</tr>
<tr>
<td>PLA</td>
<td>1.25</td>
<td>2-3.2</td>
<td>54</td>
<td>-0.7-0.8</td>
</tr>
<tr>
<td>PHB</td>
<td>1.2</td>
<td>3.5</td>
<td>68-81</td>
<td>1.39</td>
</tr>
<tr>
<td>PCL</td>
<td>1.14</td>
<td>0.2-0.4</td>
<td>77</td>
<td>3.1</td>
</tr>
<tr>
<td>Θερμοπλαστικό άμυλο</td>
<td>1.3</td>
<td>0.3-0.7</td>
<td>25.4</td>
<td>1.14</td>
</tr>
<tr>
<td>Mater-bi</td>
<td>1.3</td>
<td>0.3-3.5</td>
<td>32.4-53.5</td>
<td>0.9-1.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Τύπος</th>
<th>Πυκνότητα (g/cm³)</th>
<th>Μέτρο ελαστικότητας (GPa)</th>
<th>Κατανάλωση ενέργειας (MJ/kg)</th>
<th>Εκπομπή CO₂ ανά κιλό (kg CO₂/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υαλονήματα</td>
<td>2.5</td>
<td>72.5</td>
<td>54.7</td>
<td>2.04</td>
</tr>
<tr>
<td>China reed</td>
<td>1.5</td>
<td>33</td>
<td>3.64</td>
<td>0.66</td>
</tr>
<tr>
<td>Κάνναβη (hemp)</td>
<td>1.48</td>
<td>30-60</td>
<td>4.7</td>
<td>~0.7</td>
</tr>
<tr>
<td>Μπαμπού</td>
<td>0.8</td>
<td>48-89</td>
<td>14.4-15.9</td>
<td>-1.2—1.0</td>
</tr>
<tr>
<td>Γινό (flax)</td>
<td>1.3</td>
<td>50-70</td>
<td>9.55</td>
<td>~0.7</td>
</tr>
<tr>
<td>PVOH</td>
<td>1.3</td>
<td>46</td>
<td>58+10%</td>
<td>2.7+10%</td>
</tr>
<tr>
<td>PHB</td>
<td>1.3</td>
<td>18</td>
<td>68+10%</td>
<td>1.39+10%</td>
</tr>
</tbody>
</table>

Πίνακας 8.1 Συγκεντρωτικά στοιχεία για βιοδιασπώμενες πολυμερικές μήτρες και ίνες σύνθετων

Στον πίνακα 8.1 παρουσιάζονται συγκεντρωμένα τα στοιχεία που μας ενδιαφέρουν προκειμένου να υπολογίσουμε τον περιβαλλοντικό αντίκτυπο των βιοδιασπώμενων πολυμερών κατά την παραγωγή τους. Τα στοιχεία προέρχονται από τις υπάρχουσες ΑΚΖ που έχουν πραγματοποιηθεί και αφορούν στην κατανάλωση ενέργειας και στην ποσότητα διοξειδίου του άνθρακα που αποβάλλεται κατά την παραγωγή και
απόρριψή τους. Για τις όποιες από PVOH και PHB, τα δεδομένα αφορούν την παραγωγή του πολυμερούς με εξαίρεση τη διαδικασία της ινοποίησης. Για το λόγο αυτό προστίθεται ένα ποσοστό 10% στην τιμή κατανάλωσης ενέργειας και εκπομπής CO₂, το οποίο θεωρείται προσεγγιστικά ότι αντιστοιχεί στην ινοποίηση.

8.2 Δείκτες απόδοσης υλικού

Για να έχει νόημα η σύγκριση των ΑΚΖ διαφορετικών υλικών θα πρέπει να αναφέρεται στις ίδιες σχεδιαστικές απαιτήσεις. Η σχεδίαση προϊόντων που περιορίζεται από μηχανικές απαιτήσεις εξαρτάται από τρεις παράγοντες: τη λειτουργία, τη γεωμετρία του αντικειμένου και τις ιδιότητες του υλικού από το οποίο κατασκευάζεται ή αλλιώς το δείκτη απόδοσης του υλικού. Η σχέση αυτή εκφράζεται ως εξής:

$$P = f \left(\text{[λειτουργικές απαιτήσεις], (γεωμετρία), (ιδιότητες υλικού]} \right)$$

Η βέλτιστη σχεδίαση προκύπτει από την επιλογή κατάλληλης γεωμετρίας και υλικών ώστε να ικανοποιούνται με τον βέλτιστο τρόπο οι λειτουργικές απαιτήσεις. Στη συγκεκριμένη περίπτωση, οι λειτουργικές απαιτήσεις (παραμόρφωση σε κάμπη) και η γεωμετρία (διαστάσεις αντικειμένου) είναι συγκεκριμένες, οπότε αυτό που πρέπει να βελτιστοποιηθεί είναι ο δείκτης απόδοσης του υλικού. Τον δείκτη απόδοσης θα τον επιλέξουμε από τον πίνακα 8.2, ανάλογα με τις σχεδιαστικές απαιτήσεις της εφαρμογής [77]. Στην περίπτωση αυτή μας ενδιαφέρει ο δείκτης απόδοσης να περιορίζεται από την ελαστική παραμόρφωση η οποία είναι σχετικά στόχο την ελαχιστοποίηση του βάρους. Στη συνέχεια εξετάζεται η δυνατότητα αντικατάστασης της συνθετικής μήτρας πολυπροπυλενίου από κατάλληλα βιοδιασπώμενα πολυμερή έτσι ώστε να προκύψει ένα πλήρως βιοδιασπώμενο σύνθετο.

6 Θεωρούμε ότι το αντικείμενο παύει να είναι λειτουργικό πέραν μιας μέγιστης απόκλισης (παραμόρφωση) όπου τα φορτία είναι πολύ μικρά για να προκαλέσουν αστοχία του υλικού (μόνιμη παραμόρφωση ή θραύση).
Πίνακας 8.2 Δείκτες απόδοσης υλικού

<table>
<thead>
<tr>
<th>Λειτουργία, αντικειμενικός στόχος και περιορισμοί</th>
<th>Μεγιστοποίηση δείκτη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σύνδεσμος, ελάχιστο βάρος, προκαθορισμένη ακαμψία</td>
<td>E/ρ</td>
</tr>
<tr>
<td>Δοκός, ελάχιστο βάρος, προκαθορισμένη ακαμψία</td>
<td>$E^{1/2}/\rho$</td>
</tr>
<tr>
<td>Δοκός, ελάχιστο βάρος, προκαθορισμένη αντοχή</td>
<td>$\sigma_y^{1/2}/\rho$</td>
</tr>
<tr>
<td>Πλάκα, ελάχιστο βάρος, προκαθορισμένη ακαμψία</td>
<td>$E^{1/3}/\rho$</td>
</tr>
<tr>
<td>Πλάκα, ελάχιστο βάρος, προκαθορισμένη αντοχή</td>
<td>$\sigma_y^{1/2}/\rho$</td>
</tr>
<tr>
<td>Στήλη, ελάχιστο βάρος, προκαθορισμένο φορτίο λυγισμού</td>
<td>$E^{1/2}/\rho$</td>
</tr>
<tr>
<td>Ελατήριο, ελάχιστο βάρος για καθορισμένη αποθήκευση ενέργειας</td>
<td>$\sigma_y^{1/2}/E\rho$</td>
</tr>
<tr>
<td>Φυσικός αρμός, μέγιστη παραμόρφωση, κάμψη χωρίς αστοχία</td>
<td>σ_y/E</td>
</tr>
</tbody>
</table>

Η μελέτη έχει ως αναφορά την παλέτα μεταφοράς αλλά δεν περιορίζεται μόνο σε αυτήν. Αναφέρεται σε οποιαδήποτε εφαρμογή αναλύεται σε δοκό σε κάμψη ή πλάκα (πάνελ) σε κάμψη με στόχο την ελαχιστοποίηση της μάζας. Γενικά, το ενδιαφέρον εστιάζεται στα σύνθετα με ενίσχυση υαλονημάτων, τα οποία παράγονται μαζικά εξαιτίας του χαμηλού κόστους τους κόστους, και στα υλικά που θα μπορούσαν να αντικαταστήσουν τα σύνθετα από υαλονήματα σε εφαρμογές που αφορούν σε δοκό και πλάκα σε κάμψη μεγιστοποιώντας την ακαμψία και ελαχιστοποιώντας τη μάζα.

8.3 Κατάταξη των βιοδιασπώμενων πολυμερών στα διαγράμματα ιδιοτήτων υλικών

Κατά τη διαδικασία σχεδιασμού ενός αντικειμένου, οι ιδιότητες των υλικών είναι αυτές που παίζουν καθοριστικό ρόλο στην επιλογή του κατάλληλου υλικού. Συνήθως, για την επιλογή ενός υλικού για μια εφαρμογή, δεν φτάνει να γνωρίζουμε μία μόνο ιδιότητα, αλλά το βέλτιστο συνδυασμό διαφορετικών ιδιοτήτων. Για το σκοπό αυτό εργάστηκε ο Ashby, για τη δημιουργία διαγραμμάτων που προσφέρουν πληροφορίες συγκεντρωμένες με εύχρηστο τρόπο, τους χάρτες Ashby. Πρόκειται για «μοτίβα» συμπεριφοράς τα οποία συσχετίζουν ιδιότητες υλικών, βοηθώντας έτσι στην εξαγωγή χρήσιμης πληροφορίας για την επιλογή των κατάλληλων υλικών για μια
συγκεκριμένη εφαρμογή. Για να καλύψουν το εύρος τιμών όλων των διαθέσιμων υλικών οι χάρτες χρησιμοποιούν λογαριθμική κλίμακα. Μετά την κατάταξη των μεμονωμένων υλικών ανάλογα με την τιμή των ιδιοτήτων τους, διακρίνονται οι ομάδες υλικών, όπως για παράδειγμα η ομάδα των πολυμερών, οι οποίες γραφικά διαχωρίζονται σε «φυσαλίδες». Η γραφική μορφή των χαρτών συντελεί στο να μεταφράστονται και να αναγνωριστούν οι ιδιότητες των υλικών πολύ πιο εύκολα από ότι πίνακες με αριθμητικές τιμές [77].

8.3.1 Διαγράμματα μηχανικών ιδιοτήτων- πυκνότητας

Οι χάρτες που απεικονίζουν τη συσχέτιση των ιδιοτήτων που καθορίζουν τη μηχανική συμπεριφορά των υλικών αφορούν συχνότερα τους συνδυασμούς ανά δύο της πυκνότητας (ρ), αντοχής στον εφελκυσμό (σf) και μέτρου ελαστικότητας (E). Τα υλικά απεικονίζονται σε κατηγορίες υλικών με παρόμοιες μηχανικές ιδιότητες (κεραμικά, μετάλλα, πολυμερή, σύνθετα) σε μορφή μεγάλων φυσαλίδων. Οι μικρές φυσαλίδες δείχνουν την περιοχή τιμών των ιδιοτήτων για καθένα από τα υλικά έξεχοριστά. Τα διαγράμματα E-ρ και σf-ρ είναι χρήσιμα για την επιλογή υλικού όταν η σχεδιαστική απαίτηση είναι η ελαστικότητα του βάρους, όπως στη συγκεκριμένη περίπτωση. Το διάγραμμα E-σf είναι χρήσιμο για εφαρμογές αποθήκευσης ελαστικής ενέργειας, όπως τα ελατήρια, ή λυγισμό πριν την διαρροή, όπως ράβδοι στήριξης. Σε κάθε χάρτη σημειώνονται κάποιες διακεκομμένες ευθείες (π.χ., στον χάρτη E-ρ, οι ευθείες που κλίνουν στην Ε/ρ, E²/ρ, E²/ρ) οι οποίες αντιστοιχούν σε συγκεκριμένες δείκτες απόδοσης υλικού (αναλόγως με την εντατική κατάσταση).

Σύμφωνα με τα στοιχεία που συγκεντρώθηκαν στα προηγούμενα κεφάλαια για τις μηχανικές ιδιότητες των βιοδιασπώμενων πολυμερών και βιοδιασπώμενων ινών, έγινε η κατάταξη των βασικότερων στα διαγράμματα ιδιοτήτων υλικών που μας ενδιαφέρουν. Πρόκειται για την κατάταξη των PLA, PGA, PHB, PCL, AAC, του υερμοπλαστικού αμύλου καθώς και των φυσικών ινών και των ινών από πολυβινυλική αλκοόλη (PVOH) στους χάρτες ιδιοτήτων υλικών E-ρ, σf-ρ και E-σf. Το εύρος των φυσαλίδων βασίζεται στο εύρος των τιμών των ιδιοτήτων τους κατά προσέγγιση.
Εικόνα 8.1 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη πυκνότητας - μέτρου ελαστικότητας [77]
Εικόνα 8.2 Κατάταξη βιοδιασπόμενων πολυμερών στο χάρτη πυκνότητας-αντοχής [77]
8.3.2 Διαγράμματα μηχανικών ιδιοτήτων- κατανάλωσης ενέργειας

Προκειμένου να απεικονισθούν οι μηχανικές ιδιότητες των υλικών σε σχέση με την ενέργεια που καταναλώνουν κατά την παραγωγή τους, δημιουργήθηκαν τα διαγράμματα μηχανικών ιδιοτήτων- κατανάλωσης ενέργειας [77]. Στα διαγράμματα αυτά (Εικ. 8.4, 8.5) έγινε κατάταξη των βιοδιασπώμενων πολυμερών με βάση τα στοιχεία που συγκεντρώθηκαν από τις υπάρχουσες ΑΚΖ για βιοδιασπώμενα πολυμερή. Όπως φαίνεται από τα διαγράμματα, τα βιοδιασπώμενα πολυμερή καταναλώνουν λιγότερη ενέργεια σε σχέση με τα σημαντικότερα κοινά πολυμερή. Είναι χαρακτηριστικό ότι οι φυσικές ίνες (αλλά και οι ίνες PVOH) βρίσκονται εκτός

Εικόνα 8.3 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη αντοχής- μέτρου ελαστικότητας [77]
της φυσαλίδας των σύνθετων εξαιτίας της πολύ χαμηλότερης κατανάλωσης ενέργειας (Εικ. 8.4).

Εικόνα 8.4 Κατάταξη βιοδιασπόμενων πολυμερών στο χάρτη μέτρου ελαστικότητας-κατανάλωσης ενέργειας παραγωγής ανά μονάδα όγκου [77]
Εικόνα 8.5 Κατάταξη βιοδιασπώμενων πολυμερών στο χάρτη αντοχής- κατανάλωσης ενέργειας παραγωγής ανά μονάδα όγκου [77]

8.4 Περίπτωση Ι: παράλληλες δοκοί σε κάμψη

Μια παλέτα μεταφοράς, ως προς τη σχεδιαστική της προσέγγιση, μπορεί να θεωρηθεί είτε ως ένα σύνολο από συνεχόμενες παράλληλες δοκούς (Εικ 8.6) είτε μια συμπαγής πλάκα. Αν θεωρήσουμε ότι το προϊόν αποτελείται από συνεχόμενες δοκούς διατεταγμένες παράλληλα, ο κατάλληλος δείκτης απόδοσης είναι της μορφής $\varepsilon = E^{\frac{1}{2}}/\rho$ (Πίνακας 8.2). Στη συγκεκριμένη εφαρμογή όπου η γεωμετρία είναι δεδομένη εξαρχής και στόχος είναι η ελαχιστοποίηση του βάρους, υπολογίζεται το ποσοστό κατά βάρος των ινών και της μήτρας στο σύνθετο. Προκειμένου να υπολογιστεί το ποσοστό των ινών κατά βάρος σε 1 kg σύνθετου, εκφράζεται αρχικά το ποσοστό κατ’ όγκο συναρτήσει του επιθυμητού δείκτη απόδοσης [11, 77]:

![Diagram](image-url)
Εικόνα 8.6 Παλέτα μεταφοράς από παράλληλες δοκούς

\[
\frac{E_{\varepsilon}^{1/2}}{\rho_c} = \left(\frac{V_f \Delta E + E_m}{V_f \Delta \rho + \rho_m} \right)^{1/2} = \alpha \Rightarrow V_f \Delta E + E_m = \alpha^2 \left(V_f \Delta \rho + \rho_m \right)^2 \Rightarrow \\
\alpha^2 (\Delta \rho)^2 V_f^2 + \left(2 \alpha^2 \rho_m \Delta \rho - \Delta E \right) V_f + \left(\alpha^2 \rho_m^2 - E_m \right) = 0 \Rightarrow \\
V_f = \frac{-\left(2 \alpha^2 \rho_m \Delta \rho - \Delta E \right) \pm \sqrt{\left(2 \alpha^2 \rho_m \Delta \rho - \Delta E \right)^2 - 4 \left(\alpha^2 \rho_m^2 - E_m \right) \alpha^2 (\Delta \rho)^2}}{2 \alpha^2 (\Delta \rho)^2} \\
(8.1)
\]

όπου \(E_{\varepsilon} \), το μέτρο ελαστικότητας του σύνθετου, \(E_m \), το μέτρο ελαστικότητας της μήτρας, \(\Delta E \), η διαφορά μέτρων ελαστικότητας της ίνας και της μήτρας, \(E_f - E_m, V_f \), το ποσοστό κατ’ όγκο των ινών, \(\rho_c \), η πυκνότητα του σύνθετου, \(\rho_m \), η πυκνότητα της μήτρας και \(\Delta \rho \), η διαφορά πυκνότητας ινών και μήτρας, \(\rho_f - \rho_m \).

Από το ποσοστό κατ’ όγκο των ινών για δεδομένο δείκτη απόδοσης α και δεδομένα υλικά ενίσχυσης και μήτρας υπολογίζεται το ποσοστό κατά βάρος των ινών σύμφωνα με τη σχέση:
\[
v_c = v_f + v_m \Rightarrow \frac{m_c}{\rho_c} = \frac{m_f}{\rho_f} + \frac{m_m}{\rho_m} \Rightarrow \frac{1}{\rho_c} = W_f \left(\frac{1}{\rho_f} + W_m \right) \frac{1}{\rho_m} \Rightarrow \\
\frac{1}{V_f \Delta \rho + \rho_m} = W_f \left(\frac{1}{\rho_f} - \frac{1}{\rho_m} \right) + \frac{1}{\rho_m} \Rightarrow \\
W_f = \frac{\left(\frac{1}{V_f \Delta \rho + \rho_m} - \frac{1}{\rho_m} \right)}{\left(\frac{1}{\rho_f} - \frac{1}{\rho_m} \right)}
\]

(8.2)

όπου \(v_c \), ο όγκος του σύνθετου, \(v_f \), ο όγκος των ινών, \(v_m \), ο όγκος της μήτρας, \(m_c \), η μάζα του σύνθετου, \(m_f \), η μάζα των ινών, \(m_m \), η μάζα της μήτρας, \(W_f \), το ποσοστό κατά βάρος των ινών και \(W_m \), το ποσοστό κατά βάρος της μήτρας. Από την τιμή του κατά βάρος ποσοστού των ινών \(W_f \) υπολογίζεται η μάζα ινών και στη συνέχεια η μάζα της πολυμερικής μήτρας για ένα κιλό ισοδύναμου σύνθετου.

8.4.1 Αντικατάσταση των υαλονημάτων από βιοδιασπώμενες ίνες σε σύνθετο

Το κριτήριο για την αντικατάσταση των υαλονημάτων σε σύνθετο μήτρας PP από βιοδιασπώμενες ίνες είναι να επιτυγχάνεται ο ίδιος δείκτης απόδοσης υλικού για την συγκεκριμένη εφαρμογή, δηλ., να επιτυγχάνεται ένα ισοδύναμο σύνθετο υλικό. Υπολογίζουμε γραφικά την τιμή του \(a = E^{1/2}/\rho \) από τον χάρτη του Ashby \(E-\rho \) φέρνοντας μια ευθεία με κλίση 2 GPa/(g/cm³) μέσα στην περιοχή των υαλονημάτων.

Το \(a \) υπολογίζεται περίπου 3.16 GPa\(^{1/2}\)/(g/cm³), όπως φαίνεται και στην εικόνα 8.7.

7 Η περιοχή των υαλονημάτων παρουσιάζει μεγάλο εύρος, ιδιαίτερα στις τιμές του μέτρου ελαστικότητας. Επιλέγουμε το κατώτερο τμήμα της φυσιαλίδας (~ 15 – 35 GPa), που αντιστοιχεί στο μέτρο ελαστικότητας κοινής βιομηχανικής παλέτας μεταφοράς (βλ. κεφ. 7).
Η αντικατάσταση των υαλονημάτων στο σύνθετο έγινε από φυσικές ίνες (καλαμιού china reed, κάνναβης, λινού), από ίνες PVOH και από ίνες PHB. Οι ίνες από πολυγλυκολικό οξύ (PGA) και πολυγαλακτικό οξύ (PLA) παρουσιάζουν χαμηλό μέτρο ελαστικότητας (8 και 6 GPa αντίστοιχα) και για το λόγο αυτό δεν μπορούν να χρησιμοποιηθούν ως ενίσχυση στη συγκεκριμένη εφαρμογή δοκού σε κάμψη. Οι ίνες από PHB φτάνουν ως προς το μέτρο ελαστικότητας τα 18 GPa [55]. Οι υπολογισμοί για τις ενέργειακές απαιτήσεις έγιναν μόνο για το στάδιο παραγωγής των απαιτούμενων υλικών για ένα κιλό σύνθετου (from cradle to factory). Στον υπολογισμό εκπομπών διοξειδίου του άνθρακα συμπεριλαμβάνονται οι φάσεις παραγωγής και απόρριψης.

Από τις σχέσεις 8.1 και 8.2 υπολογίζονται τα ποσοστά κατά βάρος για σύνθετα με PP και ενίσχυση βιοδιασπώμενων ινών. Στη συνέχεια, και με βάση αυτά τα ποσοστά,
υπολογίζεται η ενέργεια που απαιτείται για την παραγωγή ενός κιλού σύνθετου και το διοξείδιο του άνθρακα που αποβάλλεται κατά την παραγωγή του και την απόρριψη μετά το τέλος του κύκλου ζωής του. Στη συνολική ενέργεια που καταναλώνεται για την παραγωγή ενός κιλού σύνθετου δεν συμπεριλαμβάνεται η ενέργεια που απαιτείται για την μορφοποίηση του υλικού σε προϊόν.

Πίνακας 8.3 Αποτελέσματα αντικατάστασης των υαλονημάτων από φυσικές ίνες για την παραγωγή 1 kg ισοδύναμου σύνθετου (δοκός σε κάψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετου.

<table>
<thead>
<tr>
<th>Υλικό ίνων σύνθετου με PP</th>
<th>Υαλονήματα (fiberglass)</th>
<th>Καλάμι (china reed)</th>
<th>Λινό (flax)</th>
<th>Κάνναβη (hemp)</th>
<th>Μπαμπού</th>
<th>PVOH</th>
<th>PHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (g/cm³)</td>
<td>2.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.48</td>
<td>0.8</td>
<td>1.34</td>
<td>1.2</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>72.5</td>
<td>33</td>
<td>50-70</td>
<td>30-60</td>
<td>48-89</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>Ποσοστό ίνων κατ' όγκο</td>
<td>24%</td>
<td>30%</td>
<td>12%</td>
<td>18%</td>
<td>8%</td>
<td>15%</td>
<td>58%</td>
</tr>
<tr>
<td>Ποσοστό ίνων κατά βάρος</td>
<td>56%</td>
<td>41%</td>
<td>27%</td>
<td>41%</td>
<td>9%</td>
<td>44%</td>
<td>66%</td>
</tr>
<tr>
<td>Ποσοστό PP κατά βάρος</td>
<td>44%</td>
<td>59%</td>
<td>73%</td>
<td>59%</td>
<td>91%</td>
<td>56%</td>
<td>34%</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας PP (MJ/kg)</td>
<td>34</td>
<td>45.54</td>
<td>56.34</td>
<td>45.54</td>
<td>70.24</td>
<td>43.22</td>
<td>26.24</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας ίνων (MJ/kg)</td>
<td>27</td>
<td>1.5</td>
<td>2.6</td>
<td>2.88</td>
<td>1.35</td>
<td>28</td>
<td>49.36</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας σύνθετου (MJ/kg)</td>
<td>61</td>
<td>47.04</td>
<td>58.94</td>
<td>48.42</td>
<td>71.59</td>
<td>~71.3</td>
<td>~75.6</td>
</tr>
<tr>
<td>Συνολική αποβολή αερίων (kgCO₂/kg)</td>
<td>2</td>
<td>1.2</td>
<td>~1.57</td>
<td>1.6</td>
<td>1.64</td>
<td>~2.3</td>
<td>1.65</td>
</tr>
</tbody>
</table>
Από την αντικατάσταση των υαλονημάτων από βιοδιασπώμενες ίνες, και για τον ίδιο
dείκτη απόδοσης, ο, βγαίνει το συμπέρασμα ότι ενεργειακά είναι περισσότερο
συμφέρουσα η παραγωγή σύνθετου με ενίσχυση φυσικών ινών (china reed, λινού, κάνναβης), ενώ οι σύνθετες με ενίσχυση ινών από PVOH και PHB καταναλώνουν
περισσότερη ενέργεια από τα υαλονήματα κατά την παραγωγή τους. Το ίδιο
συμβαίνει και με τις ίνες από μπαμπού, όμως αυτό οφείλεται στην μεγαλύτερη
ακαμψία του μπαμπού που οδηγεί σε πολύ μικρό ποσοστό ινών και μεγάλο ποσοστό
σε μήτρα PP (91 % κ.β.). Ως προς την εκπομπή διοξειδίου του άνθρακα, και πάλι, τα
σύνθετα με φυσικές ίνες (κυρίως ίνες από china reed) είναι λιγότερο επιβαρυντικά για
tο περιβάλλον ως προς την εκπομπή αερίων που ενισχύουν το φαινόμενο του
θερμοκηπίου, ενώ και το σύνθετο με ίνες PHB φαίνεται λιγότερο επιβαρυντικό από
tο σύνθετο με υαλονήματα. Το σύνθετο από PP και ίνες PVOH κατά την παραγωγή
και απόρριψή του εκπέμπει περισσότερο διοξείδιο του άνθρακα από ότι το σύνθετο
με ενίσχυση υαλονημάτων. Σε γενικές γραμμές οι τιμές εκπομπών αερίων του
θερμοκηπίου δεν παρουσιάζουν μεγάλες διαφορές.

8.4.2 Αντικατάσταση της μήτρας PP από βιοδιασπώμενα θερμοπλαστικά πολυμερή

Στην περίπτωση αντικατάστασης των υαλονημάτων από φυσικές ίνες, το υλικό είναι
ένα σύνθετο με ενίσχυση βιοδιασπώμενων ινών αλλά συνθετικής μήτρας. Είναι
γνωστό ότι τα σύνθετα που παράγονται από δύο διαφορετικά υλικά γενικά δεν
μπορούν να ανακυκλωθούν ή να ξαναχρησιμοποιηθούν [27]. Για το λόγο αυτό, τα
περισσότερα σύνθετα καταλήγουν σε χώρους υγειονομικής ταφής ή κάποια
αποτεφρώνονται μετά τη χρήση, μέθοδοι αρκετά επιβλαβείς για το περιβάλλον. Η
δημιουργία πλήρους βιοδιασπώμενων σύνθετων αποτελεί μια λύση στο πρόβλημα
αυτό.

Στην παρούσα φάση γίνεται μελέτη για αντικατάσταση της μήτρας PP από PLA,
PHB, θερμοπλαστικό άμυλο και ένα τύπο mater-bi (μίγμα αμύλου με συνθετικά
βιοδιασπώμενα πολυμερή). Ως ενίσχυση χρησιμοποιούνται οι ίνες από china reed,
αφού σύμφωνα με τα αποτελέσματα του πίνακα 8.3, αποτελούν βέλτιστη λύση για
την ενίσχυση σύνθετου με βιοδιασπώμενες ίνες. Το PCL δεν ενδείκνυται για την
αντικατάσταση του PP ως μήτρα στο σύνθετο εξαιτίας του χαμηλού σημείου τήξης
(58-60 °C) σε σχέση με το σημείο τήξης του πολυπροπυλενίου (175 °C).
Η αντικατάσταση της μήτρας από PP με μήτρα από βιοδιασπόμενα πολυμερή προσθέτει το πλεονέκτημα της πλήρους βιοδιάσπασης διατηρώντας τις επιθυμητές μηχανικές ιδιότητες ενώ πιθανώς βελτιώνεται και η πρόσφυση μεταξύ οργανικής μήτρας και οργανικής ίνας. Μετά τη χρήση και απόρριψή τους, τα βιοδιασπόμενα σύνθετα ολοκληρώνουν τον κύκλο ζωής τους μέσω της κομποστοποίησης. Με εφαρμογή των σχέσεων 8.1 και 8.2 και των δεδομένων που έχουν συγκεντρωθεί, εξάγονται τα αποτελέσματα που ταξινομούνται στον παρακάτω πίνακα.

<table>
<thead>
<tr>
<th>Υλικό μήτρας</th>
<th>PP</th>
<th>PLA</th>
<th>Θερμοπλαστικό άμυλο</th>
<th>Mater-bi</th>
<th>PHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (g/cm³)</td>
<td>0.9</td>
<td>1.25</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>2.5</td>
<td>2-3.2</td>
<td>0.3</td>
<td>0.2-3</td>
<td>3.5</td>
</tr>
<tr>
<td>Ποσοστό ινών κατ’ όγκο</td>
<td>30%</td>
<td>47%</td>
<td>60%</td>
<td>58%</td>
<td>49%</td>
</tr>
<tr>
<td>Ποσοστό ινών china reed κατά βάρος</td>
<td>41%</td>
<td>57%</td>
<td>63%</td>
<td>60%</td>
<td>53%</td>
</tr>
<tr>
<td>Ποσοστό μήτρας κατά βάρος</td>
<td>59%</td>
<td>43%</td>
<td>37%</td>
<td>40%</td>
<td>47%</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας μήτρας (MJ/kg)</td>
<td>45.54</td>
<td>23.22</td>
<td>9.4</td>
<td>~11.8</td>
<td>31.9</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας ινών (MJ/kg)</td>
<td>1.5</td>
<td>2.08</td>
<td>2.3</td>
<td>2.2</td>
<td>1.93</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας σύνθετου (MJ/kg)</td>
<td>47.04</td>
<td>25.3</td>
<td>11.7</td>
<td>~14</td>
<td>~33.9</td>
</tr>
<tr>
<td>Συνολική αποβολή αερίων kgCO₂/kg</td>
<td>1.2</td>
<td>~0.7</td>
<td>0.83</td>
<td>0.87</td>
<td>1</td>
</tr>
</tbody>
</table>

Πίνακας 8.4 Αποτελέσματα αντικατάστασης της μήτρας PP από βιοδιασπόμενα πολυμερή για 1 kg ισοδύναμου σύνθετου (δοκός σε κάμψη). Όλες οι ενέργειες έχουν αναληθεί σε ένα κιλό σύνθετου.
8.4.3 Συζήτηση αποτελεσμάτων

Η αντικατάσταση της μήτρας του σύνθετου από βιοδιασπώμενα πολυμερή (PLA, θερμοπλαστικό ύμιλο, mater-bi, PHB), όπως φαίνεται και στον πίνακα 8.4, ενεργειακά είναι συμφέρουσα σε όλες τις περιπτώσεις, εξοικονομώντας από 13-35 MJ ανά κιλό σύνθετου σε σχέση με το σύνθετο από PP και φυσικές ίνες. Η διαφορά αυτή είναι σημαντικά υψηλότερη από ότι στην περίπτωση αντικατάστασης μόνο της ενίσχυσης (2-14 MJ/kg). Η μικρή εξοικονόμηση προκύπτει εξαιτίας της υπαράξης της μήτρας κατά βάρος ποσοστού σε ενεργοβόρο και ρυπογόνο υλικό μήτρας στο σύνθετο με ενίσχυση βιοδιασπώμενων ινών, σε σχέση με το σύνθετο υαλονημάτων. Ενώ, δηλ., το ποσοστό κατ’ όγκο των βιοδιασπώμενων ινών είναι αυξημένο, το ποσοστό κατά βάρος είναι μικρότερο εξαιτίας της πολύ μικρότερης πυκνότητάς τους, συγκριτικά με τα υαλονήματα. Ετσι, αυξάνεται η τελική κατανάλωση ενέργειας και αντισταθμίζεται η εξοικονόμηση ενέργειας που προκύπτει από την ένα προς ένα αντικατάσταση των υαλονημάτων από φυσικές ίνες.

Ως προς την εκπομπή διοξειδίου του άνθρακα, το PLA και το θερμοπλαστικό ύμιλο έχουν τη χαμηλότερη αποβολή αερίων του θερμοκηπίου κατά την παραγωγή και απόρριψή τους. Σύμφωνα με τις τιμές που προέκυπταν, το θερμοπλαστικό ύμιλο αποτελεί τη βέλτιστη επιλογή αντικατάστασης του PP αφού χρειάζεται τη λιγότερη ενέργεια για την παραγωγή και έχει τη μικρότερη συμβολή ως προς τις εκπομπές διοξειδίου του άνθρακα κατά την παραγωγή και απόρριψή του (11.7 MJ/kg έναντι 47.04 MJ/kg, και 0.83 kgCO2/kg έναντι 1.2 kgCO2/kg του PP).

Γενικά, οι περιπτώσεις πλήρους βιοδιασπώμενων σύνθετων (βιοδιασπώμενη μήτρα, βιοδιασπώμενες ίνες ενίσχυσης) είναι συμφέρουσες, τόσο ενεργειακά όσο και ως προς την εκπομπή διοξειδίου του άνθρακα. Η λιγότερη συμφέρουσα περίπτωση του πλήρους βιοδιασπώμενου σύνθετου είναι η καλύτερη του σύνθετου από PP με ενίσχυση βιοδιασπώμενων ινών. Η συνολική εξοικονόμηση ενέργειας του σύνθετου από θερμοπλαστικό ύμιλο και φυσικές ίνες σε σχέση με το σύνθετο από PP και ενίσχυση υαλονημάτων φτάνει τα 50 MJ/kg και τα 1.3 kgCO2/kg. Επιπλέον, τα πλήρως βιοδιασπώμενα σύνθετα δεν επιβαρύνουν το περιβάλλον κατά την απόρριψή του μετά το τέλος του κύκλου ζωής τους.
8.5 Περίπτωση II: συμπαγής πλάκα σε κάμψη

Στην περίπτωση που θεωρηθεί ότι το σύνθετο αντικείμενο είναι μια συμπαγής πλάκα σε κάμψη (Εικ. 8.8) και αυτό που μας ενδιαφέρει είναι η ελαχιστοποίηση του βάρους για δεδομένη ακαμψία, λαμβάνουμε ως δείκτη απόδοσης \(\alpha = E^{1/3}/\rho \) (πίνακας 8.2). Για την αντικατάσταση των υαλονημάτων από βιοδιασπώμενες ίνες, υπολογίζουμε γραφικά την τιμή του \(\alpha \) από τον χάρτη του Ashby \(E-\rho \) για δείκτη απόδοσης \(\alpha = 2 \text{ GPa}^{1/3}/(\text{g/cm}^3) \) φέρνοντας ευθεία με κλίση 3 GPa/(g/cm^3) που διέρχεται από την περιοχή των σύνθετων με υαλονήματα, όπως φαίνεται και στην εικόνα 8.9.

Εικόνα 8.8 Παλέτα μεταφοράς με συμπαγή επιφάνεια
Εικόνα 8.9 Γραφικός υπολογισμός του δείκτη απόδοσης $a = E^{1/3}/\rho$

Εκφράζοντας και πάλι το δείκτη απόδοσης για σύνθετο υλικό συναρτήσει του ποσοστού κατ’ όγκο V_f, έχουμε:

$$\frac{E_{e}^{1/3}}{\rho_e} = \frac{(V_f \Delta E + E_m)^{1/3}}{V_f \Delta \rho + \rho_m} = a \Leftrightarrow V_f \Delta E + E_m = a^3 (V_f \Delta \rho + \rho_m)^3 \Leftrightarrow$$

$$a^3 \Delta \rho^3 V_f^3 + 3a^3 \Delta \rho^2 \rho_m V_f^2 + (3a^3 \Delta \rho \rho_m^2 - \Delta E)V_f + a^3 \rho_m^3 - E_m = 0$$

(8.3)

Οι ρίζες της τριτοβάθμιας εξίσωσης μας δίνουν το ποσοστό κατ’ όγκο των ινών στο σύνθετο και στη συνέχεια, από τη σχέση 8.2 υπολογίζεται το ποσοστό κατά βάρος των ινών και κατ’ επέκταση της μητρικής φάσης.
8.5.1 Αντικατάσταση των υαλονημάτων από βιοδιασπώμενες ίνες σε συμπαγή πλάκα

Από τις σχέσεις 8.3 και 8.2 υπολογίζονται τα κατά βάρος ποσοστά του σύνθετου σε κάθε μία περίπτωση. Στη συνέχεια υπολογίζεται η ενεργειακή κατανάλωση για την παραγωγή ενός κιλού ισοδύναμου σύνθετου και η εκπομπή αερίων θερμοκηπίου κατά τις φάσεις παραγωγής και απόρριψης του σύνθετου.

<table>
<thead>
<tr>
<th>Υλικό ίνων σύνθετου με PP</th>
<th>Υαλονήματα (china reed)</th>
<th>Καλάμι (flax)</th>
<th>Λινό (hemp)</th>
<th>Μπαμπού</th>
<th>PVOH</th>
<th>PHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (g/cm³)</td>
<td>2.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.48</td>
<td>0.8</td>
<td>1.34</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>72.5</td>
<td>33</td>
<td>50-70</td>
<td>30-60</td>
<td>48-89</td>
<td>46</td>
</tr>
<tr>
<td>Ποσοστό ίνων κατά βάρος</td>
<td>23%</td>
<td>26.8%</td>
<td>~11.4%</td>
<td>~15.5%</td>
<td>4%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Ποσοστό PP κατά βάρος</td>
<td>77%</td>
<td>73.2%</td>
<td>~88.6%</td>
<td>~84.5%</td>
<td>96%</td>
<td>88.9%</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας PP (MJ/kg)</td>
<td>59.4</td>
<td>56.5</td>
<td>68.3</td>
<td>65.22</td>
<td>74.1</td>
<td>68.62</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας ίνων (MJ/kg)</td>
<td>12.58</td>
<td>0.975</td>
<td>1.08</td>
<td>0.728</td>
<td>0.6</td>
<td>7.08-11.43</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας σύνθετου (MJ/kg)</td>
<td>~72</td>
<td>57.47</td>
<td>69.38</td>
<td>~66</td>
<td>74.7</td>
<td>75.7-80</td>
</tr>
<tr>
<td>Συνολική αποβολή αερίων kgCO₂/kg</td>
<td>~1.9</td>
<td>1.52</td>
<td>1.71</td>
<td>1.67</td>
<td>1.78</td>
<td>1.97-2.14</td>
</tr>
</tbody>
</table>

Πίνακας 8.5 Αποτελέσματα αντικατάστασης των υαλονημάτων από φυσικές ίνες για την παραγωγή 1 kg ισοδύναμου σύνθετου (πλάκα σε κάμψη). Όλες οι ενέργειες έχουν αναχθεί σε ένα κιλό σύνθετου.

Ως βέλτιστη περίπτωση αντικατάστασης των υαλονημάτων στο σύνθετο παρουσιάζεται και πάλι η περίπτωση των φυσικών ίνων china reed, κατά την οποία
πραγματοποιείται εξοικονόμηση ενέργειας περίπου 15 MJ και 0.4 kgCO₂ αποβολής αερίων ανά κιλό σύνθετου. Οι περιπτώσεις των βιοδιασπώμενων ινών από PVOH και PHB δεν παρουσιάζουν πλεονέκτημα σε σχέση με τα υαλονήματα στο σύνθετο. Οι ίνες μπαμπού επίσης δεν εξοικονομούν ενέργεια κατά την παραγωγή του σύνθετου εξαιτίας του μικρού ποσοστού σε ίνες του σύνθετου (μόλις 4 % κ.β. σε ίνες). Οι διαφορές των τιμών μεταξύ των υαλονημάτων και των βιοδιασπώμενων ινών είναι μικρές. Πιθανώς, σε εφαρμογές μεγάλης κλίμακας τα κέρδη να είναι σημαντικά, όμως δεν γίνεται σοστή εκμετάλλευση των οφέλων για το περιβάλλον ιδιαίτερα των βιοδιασπώμενων υλικών λόγω του πολύ μικρού ποσοστού τους στο σύνθετο.

8.5.2 Αντικατάσταση της μήτρας σύνθετου από βιοδιασπώμενα θερμοπλαστικά πολυμερή

Από τη μελέτη για αντικατάσταση των υαλονημάτων από βιοδιασπώμενες ίνες, το συμπέρασμα ήταν ότι η βέλτιστη λύση από πλευράς ενεργειακής κατανάλωσης και εκπομπής διοξειδίου του άνθρακα είναι οι φυσικές ίνες από καλάμι τύπου china reed. Προκειμένου να προκύψει ένα πλήρως βιοδιασπώμενο σύνθετο υλικό που θα υκανοποιεί τις απαιτήσεις της συγκεκριμένης εφαρμογής, γίνεται αντικατάσταση της μητρικής φάσης από βιοδιασπώμενα πολυμερή, διατηρώντας ως ενίσχυση τις ίνες china reed.

<table>
<thead>
<tr>
<th>Υλικό μήτρας</th>
<th>PP</th>
<th>PLA</th>
<th>Θερμοπλαστικό άμυλο</th>
<th>Mater-bi</th>
<th>PHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (g/cm³)</td>
<td>0.9</td>
<td>1.25</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>2.5</td>
<td>2-3.2</td>
<td>0.3</td>
<td>0.2-3</td>
<td>3.5</td>
</tr>
<tr>
<td>Ποσοστό ινών κατά βάρος</td>
<td>26.8%</td>
<td>~74.6%</td>
<td>70%</td>
<td>~80%</td>
<td>63%</td>
</tr>
<tr>
<td>Ποσοστό μήτρας κατά βάρος</td>
<td>73.2%</td>
<td>~25.4%</td>
<td>30%</td>
<td>~20%</td>
<td>37%</td>
</tr>
<tr>
<td>Κατανάλωση ενέργειας μήτρας (MJ/kg)</td>
<td>56.5</td>
<td>13.71</td>
<td>7.62</td>
<td>~7</td>
<td>25.1</td>
</tr>
</tbody>
</table>
Το κύριο πλεονέκτημα από την αντικατάσταση της συνθετικής μήτρας PP από βιοδιασπώμενα πλάκα σε κάμψη, έχει γενικά σαν αποτέλεσμα τη σημαντική μείωση της κατανάλωσης ενέργειας και εκπομπής αερίων.

8.5.3 Συζήτηση αποτελεσμάτων

Από τα αποτελέσματα της αντικατάστασης του PP από βιοδιασπώμενη μήτρα για συμπαγές πάνελ, τα ποσοστά κατά βάρος των ινών είναι σημαντικά μεγαλύτερα από αυτά της μητρικής φάσης σε κάθε περίπτωση. Από το γεγονός αυτό έχει γενικά σαν αποτέλεσμα τη σημαντική μείωση στα κοστά κατανάλωσης ενέργειας και εκπομπής αερίων.

Το βασικό πλεονέκτημα από την αντικατάσταση της συνθετικής μήτρας PP από βιοδιασπώμενα πλάκα σε κάμψη με ενίσχυση φυσικών ινών είναι το γεγονός ότι προκύπτουν πλήρως βιοδιασπώμενα σύνθετα. Η ακόλουθη περίπτωση αντικατάστασης της συνθετικής μήτρας φαίνεται να είναι από τη θερμοπλαστικό άμυλο και το mater-bi, με κατανάλωση ενέργειας κατά την παραγωγή 10 MJ και εκπομπή αερίων θερμοκηπίου περίπου 0.76 kgCO₂/kg. Αν συγκρίνουμε το σύνθετο από PP και ενίσχυση υαλονημάτων με το σύνθετο από θερμοπλαστικό άμυλο και ενίσχυση φυσικών ινών, τα πλεονέκτήματα που προκύπτουν είναι σημαντικά. Τα ενεργειακά κέρδη φτάνουν τα 60 MJ ανά κιλό σύνθετου και η μείωση των εκπομπών αερίων φτάνει τα 1.14 kgCO₂/kg. Η πρόσφυση μεταξύ υδρόφιλων ινών και υδρόφιλης μήτρας αναμένεται να είναι καλύτερη.

Αντιπαραθέτοντας, επιπλέον, τους πίνακες 8.4 και 8.6 παρατηρούμε ότι η εντατική κατάσταση της περίπτωσης Ι οδηγεί σε μείωση του ποσοστού ινών στο πολυπροπυλένιο σε σύγκριση με την περίπτωση ΙΙ, ενώ στις βιοδιασπώμενες μήτρες
το ποσοστό ινών αυξάνεται. Αυτό έχει ως αποτέλεσμα το ενεργειακό πλεονέκτημα της χρήσης πλήρως βιοδιασπώμενων σύνθετων σε αντικατάσταση μερικώς ή πλήρως συμβατικών σύνθετων να γίνεται σημαντικότερο (στην καλύτερη περίπτωση, εξοικονόμηση ενέργειας 47 MJ/kg έναντι 35 MJ/kg). Τονίζεται ότι τα συμπεράσματα αυτά αφορούν την παραγωγή και αποβολή του υλικού δεδομένου ότι υποβάλλεται σε συγκεκριμένη εντατική κατάσταση χωρίς να λαμβάνονται υπόψη οι λεπτομέρειες της γεωμετρίας, που οπωσδήποτε έχουν επιπτώσεις στα τελικά αποτελέσματα.
ΣΥΜΠΕΡΑΣΜΑΤΑ

Η μόλυνση του περιβάλλοντος και ο τρόπος διαχείρισης των απορριμμάτων αποτελούν σημαντικά προβλήματα της εποχής μας. Η προστασία του περιβάλλοντος είναι ανάγκη να αποτελεί προτεραιότητα κάθε κοινωνικής και ατομικής ενέργειας. Κατ’ επέκταση, υποχρέωση του σχεδιαστή θα πρέπει να είναι η διερεύνηση ολόκληρου του κύκλου ζωής ενός προϊόντος -κυρίως ως προς τα συστήματα παραγωγής, κατανάλωσης και απόρριψης- δίνοντας έμφαση στον περιβαλλοντικό αντίκτυπο, και, τελικά, η σχεδίαση του προϊόντος βάσει των απαιτήσεων της ελάχιστης δυνατής επιβάρυνσης του περιβάλλοντος. Η αειφορία είναι ανάγκη να αποτελεί αναπόσπαστο κομμάτι της σχεδιαστικής διαδικασίας και όχι μια τάση της εποχής.

Η σχεδίαση προϊόντων επηρεάζεται από συγκεκριμένους παράγοντες οι οποίοι εξελίσσονται διαρκώς. Οι παράγοντες αυτοί είναι η αγορά, η τεχνολογία, το επενδυτικό κλίμα, η απαίτηση για καθαρό περιβάλλον καθώς και η απαίτηση για καλαίσθητα προϊόντα. Την απαίτηση για καθαρό περιβάλλον καλύπτουν η αειφορός σχεδίαση και η σχεδίαση για το περιβάλλον, έννοιες συγγενείς αλλά όχι ταυτόσημες. Ως αειφορός σχεδίαση θεωρείται η σχεδίαση που στοχεύει στη βελτίωση της ποιότητας ζωής του ανθρώπου, κάνοντας χρήση λιγότερων υλικών. Η σχεδίαση για το περιβάλλον εμπεριέχεται στην αειφόρο σχεδίαση. Ως σχεδίαση για το περιβάλλον θεωρείται η προσπάθεια για την μικρότερη δυνατή επιβάρυνση των προϊόντων στο περιβάλλον πραγματοποιώντας αλλαγές στη σχεδιαστική διαδικασία, οι οποίες γίνονται αντιληπτές βραχυπρόθεσμα. Βασικές αρχές της αειφορού σχεδίασης είναι η χρήση ανανεώσιμων πρώτων υλών και πηγών ενέργειας, η χρήση υλικών και μεθόδων μορφοποίησης που απαιτούν την ελάχιστη κατανάλωση ενέργειας, η ελαχιστοποίηση εκπομπών βλαβερών ουσιών και κυρίως αερίων που ενισχούν το φαινόμενο του θερμοκηπίου (διοξείδιο του άνθρακα) καθώς και η χρήση υλικών που έχουν την ιδιότητα της βιοδιάσπασης και της κομποστοποίησης.
Τα βιοδιασπώμενα πολυμερή αποτελούν μέρος της αειφόρου ανάπτυξης και δίνουν εν μέρει λύση στο πρόβλημα της μόλυνσης του περιβάλλοντος και της διαχείρισης των απορριμμάτων. Ως βιοδιασπώμενα θεωρούνται τα πολυμερή τα οποία αποκοδιμούνται παρουσία μικροοργανισμών σε συστατικά όπως το διοξείδιο του ανθράκων και το νερό. Τα βιοδιασπώμενα πολυμερή προέρχονται κυρίως από ανανεώσιμες πρώτες ύλες, αλλά επιπλέον πραγματοποιείται παραγωγή τους από πετροχημικές πρώτες ύλες. Στα πλαίσια των στόχων της σχεδίασης για το περιβάλλον ως προς τα βιομηχανικά προϊόντα είναι η παραγωγή βιοδιασπώμενων υλικών σε μεγάλες ποσότητες και ανταγωνιστική τιμή, ούτως ώστε να γίνουν αποδεκτά από το αγοραστικό κοινό. Τα πεδία εφαρμογών τους περιλαμβάνουν τομείς όπως η ιατρική, προϊόντα μιας χρήσης, η αυτοκινητοβιομηχανία, η υφαντουργία και ο αγροτικός τομέας. Το πρόβλημα ως προς την ειδραύληση τους στην αγορά εστιάζεται στο σχετικά υψηλό τους κόστους και στις ανεπαρκείς μεθόδους μαζικής διαχείρισης των βιοδιασπώμενων απορριμμάτων (κομποστοποίηση).

Μια μεθοδολογία που χρησιμοποιείται από την αειφόρο σχεδίαση για τον υπολογισμό του αποτυπώματος του κύκλου ζωής ενός προϊόντος ή υλικού στο περιβάλλον είναι η Αξιολόγηση Κύκλου Ζωής. Η Αξιολόγηση Κύκλου Ζωής και οι δείκτες απόδοσης υλικών εξάγουν συμπεράσματα για την επιλογή υλικών για συγκεκριμένου συνδυασμού λειτουργιών, αντικειμενικού στόχου και περιορισμών, κυρίως ως προς την ποσότητα πρώτης ύλης που χρησιμοποιείται, ως προς την κατανάλωση ενέργειας και ως προς τις εκπομπές αερίων του θερμοκηπίου που εκλύονται κατά τη διάρκεια του κύκλου ζωής του υλικού. Από υπάρχοντες ΑΚΖ που έχουν πραγματοποιηθεί για τα κυριότερα βιοδιασπώμενα πολυμερή, συγκεκριμένα δεδομένα τα οποία βοήθησαν στην πραγματοποίηση μελέτης για πιθανή αντικατάσταση συνθετικών με ενίσχυση ναυλωμάτων (το πιο διαδεδομένο σύνθετο με ενίσχυση νιόν) από βιοδιασπώμενα πολυμερή σε εφαρμογές δοκικού και πλάκας και κάμψης. Στις εφαρμογές αυτές έχουμε ως σχεδιαστική απαίτηση την μεγιστοποίηση της ακαμψίας (ελάχιστη ελαστική παραμόρφωση) με το ελάχιστο δυνατό βάρος. Σκοπός μιας τέτοιου τύπου ανάλυσης είναι να εξαγοράσουν γενικά συμπεράσματα για το ίδιο το υλικό, ανεξαρτήτως της γεωμετρίας του τελικού αντικειμένου, που θα οδηγήσουν την σχεδίαση της μια πρώτη προσέγγιση των περιβαλλοντικών επιπτώσεων που συνεπάγεται η επιλογή υλικού.
Από την παραπάνω ανάλυση προέκυψε το συμπέρασμα ότι η αντικατάσταση των υαλονημάτων από φυσικές ίνες σε σύνθετο με μήτρα από πολυπροπυλένιο είναι οριακά συμφέρουσα τόσο ως προς την κατανάλωση ενέργειας όσο και ως προς την εκπομπή αερίων του θερμοκηπίου κατά την παραγωγή ενός σύνθετου προορισμένου για συνήθεις τεχνικές εφαρμογές. Αυτό οφείλεται στην πολύ μικρότερη πυκνότητα των βιοδιασπώμενων ινών σε σχέση με αυτή των υαλονημάτων που αντισταθμίζει τα ενεργειακά οφέλη από την ένα προς ένα αντικατάσταση των υαλονημάτων από φυσικές ίνες. Η οριακή αυτή εξοικονόμηση ενέργειας και εκπομπών αερίων δεν είναι σημαντική ώστε να δικαιολογηθεί τη συμβολή των σύνθετων αυτών στην αειφόρο σχεδίαση (τουλάχιστον σε μικρή κλίμακα). Οι μέθοδοι διαχείρισης απορριμμάτων που μπορούν να χρησιμοποιηθούν σε αυτή την περίπτωση είναι η αποτέφρωση, η απόρριψη σε χώρους υγειονομικής ταφής και η ανακύκλωση, με το ανάλογο πάντα οικονομικό και περιβαλλοντικό κόστος.

Στην περίπτωση αντικατάστασης τόσο των ινών όσο και της μητρικής φάσης από βιοδιασπώμενα πολυμερή, το σύνθετο που προκύπτει είναι πλήρως βιοδιασπώμενο. Η εξοικονόμηση ενέργειας και εκπομπών διοξειδίου του άνθρακα κατά την παραγωγή του είναι σημαντική, ενώ γίνεται αντιληπτή και η επίπτωση που έχει σε αυτά τα μέγεθη η εντατική κατάσταση στην οποία βρίσκεται το υλικό. Συγκεκριμένα, στην περίπτωση συμπαγούς επιφάνειας σε κάμηλη οι περιβαλλοντικές επιπτώσεις είναι περιορισμένες σε σχέση με την περίπτωση δοκού σε κάμηλη. Η εξοικονόμηση αυτή οφείλεται στο μεγάλο κατά βάρος ποσοστό ινών και κατά συνέπεια στο χαμηλό ποσοστό μήτρας. Στην περίπτωση αυτή επιλέγεται ως μέθοδος διαχείρισης απορριμμάτων η κομποστοποίηση, ελαχιστοποιώντας την επιβάρυνση στο περιβάλλον, μείωνοντας τις εκπομπές αερίων του θερμοκηπίου στο περιβάλλον σε σχέση με την αποτέφρωση και εξοικονομώντας χώρο απόθεσης απορριμμάτων.

Τα υλικά κυριαρχούν τη ζωή μας τόσο σε επίπεδο καθημερινής χρήσης όσο και σε επίπεδο υψηλής τεχνολογίας. Οι σχεδιαστικές βρίσκονται πάντα σε αναζήτηση για κάτι νέο. Η χρήση νέων υλικών αποτελεί πηγή έμπνευσης για τους σχεδιαστές προϊόντων. Όταν μάλιστα η σχεδίαση δεν περιορίζεται στην αισθητική και λειτουργική αρτιότητα αλλά διέπεται επιπλέον και από περιβαλλοντική συνείδηση, το αποτέλεσμα είναι ολοκληρωμένο. Αυτή η πτυχή του σχεδιασμού αφορά αναπόφευκτα την επιλογή του κατάλληλου υλικού για κάθε προϊόν η οποία αποτελεί συνδυασμό λειτουργικών
ιδιοτήτων και περιβαλλοντικών επιπτώσεων. Τα βιοδιασπώμενα πολυμερή συντελούν στην επίτευξη του στόχου αυτού. Η ΑΚΖ υλικών αποτελεί εργαλείο για το σχεδιαστή, προσφέροντας μια πρώτη προσέγγιση ως προς το περιβαλλοντικό και οικονομικό αποτύπωμα κάθε υλικού ξεχωριστά. Η προσέγγιση αυτή αποτελεί τη βάση για μια ολοκληρωμένη ΑΚΖ για συγκεκριμένη εφαρμογή η οποία δίνει την τελική εικόνα του αντίκτυπου που έχει το κάθε προϊόν στο περιβάλλον. Παράλληλα όμως με την διάδοση των βιοδιασπώμενων πολυμερών και την πραγματοποίηση ΑΚΖ για τα υλικά και προϊόντα, θα πρέπει να ενισχύεται και η ανάπτυξη περιβαλλοντικής συνείδησης στους καταναλωτές προκειμένου να επιτευχθεί περιορισμός της άσκοπης κατανάλωσης. Συμπερασματικά, η έρευνα και η προσπάθεια για περιορισμό της περιβαλλοντικής επιβάρυνσης θα πρέπει να είναι πολλαπλών κατευθύνσεων και όχι να περιορίζεται σε μια και μόνο λύση.
ΠΑΡΑΡΤΗΜΑ Α

Συγκεντρωτικός πίνακας ιδιοτήτων φυσικών βιοδιασπώμενων πολυμερών

<table>
<thead>
<tr>
<th>Υλικό</th>
<th>ρ (g/cm³)</th>
<th>(\sigma_y) (MPa)</th>
<th>(\sigma_f) (MPa)</th>
<th>(E) (GPa)</th>
<th>(T_m) (°C)</th>
<th>(T_g) (°C)</th>
<th>Χρόνος βιοδιάσπασης (μήνες)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυσικές ίνες</td>
<td>0.8-1.5</td>
<td>-</td>
<td>-</td>
<td>30-89</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Θερμοπλαστικό άμυλο</td>
<td>1.3</td>
<td>25-50</td>
<td>30-40</td>
<td>0.3-0.9</td>
<td>75-150</td>
<td>>0</td>
<td>1-2</td>
</tr>
<tr>
<td>Mater-bi</td>
<td>1.3</td>
<td>-</td>
<td>20-30</td>
<td>0.3-3.5</td>
<td>77</td>
<td>>0</td>
<td>3-6</td>
</tr>
<tr>
<td>PHA</td>
<td>1.25</td>
<td>16-32</td>
<td>10-90</td>
<td>0.9-3.5</td>
<td>40-180</td>
<td>-57-10</td>
<td>2-3</td>
</tr>
<tr>
<td>PHB</td>
<td>1.25</td>
<td>16</td>
<td>40</td>
<td>0.9-1.2</td>
<td>175</td>
<td>15</td>
<td>2-3</td>
</tr>
</tbody>
</table>

ΠΑΡΑΡΤΗΜΑ Β

Συγκεντρωτικός πίνακας ιδιοτήτων συνθετικών βιοδιασπώμενων πολυμερών

<table>
<thead>
<tr>
<th>Υλικό</th>
<th>ρ (g/cm³)</th>
<th>(E) (GPa)</th>
<th>(\sigma_y) (MPa)</th>
<th>(\sigma_f) (MPa)</th>
<th>(T_g) (°C)</th>
<th>(T_m) (°C)</th>
<th>Χρόνος βιοδιάσπασης (μήνες)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA</td>
<td>1.25</td>
<td>2.0-3.2</td>
<td>53-70</td>
<td>44-66</td>
<td>55-65</td>
<td>130-175</td>
<td>2-3</td>
</tr>
<tr>
<td>PGA</td>
<td>1.5-1.64</td>
<td>2-4</td>
<td>90</td>
<td>890</td>
<td>35-40</td>
<td>220-225</td>
<td>6-12</td>
</tr>
<tr>
<td>PCL</td>
<td>1.14</td>
<td>0.2-0.4</td>
<td>14-16</td>
<td>20-25</td>
<td>-65-(-60)</td>
<td>58-60</td>
<td>>24</td>
</tr>
<tr>
<td>AAC</td>
<td>1.21-1.25</td>
<td>0.07-0.107</td>
<td>-</td>
<td>22</td>
<td>-30</td>
<td>110-115</td>
<td>3</td>
</tr>
<tr>
<td>PVOH</td>
<td>1.28-1.34</td>
<td>0.383</td>
<td>11.5</td>
<td>28.7</td>
<td>85</td>
<td>250</td>
<td>Στο νερό διαλύεται γρήγορα, στο χώμα με πολύ αργό ρυθμό</td>
</tr>
<tr>
<td>PVOH (ίνες)</td>
<td>1.34</td>
<td>46</td>
<td>-</td>
<td>1800</td>
<td>75-85</td>
<td>210-220</td>
<td></td>
</tr>
</tbody>
</table>
ΑΝΑΦΟΡΕΣ

[18] EPIC (environment and plastics industry council), Biodegradable Polymers: A review, 2000
[19] www.european-bioplastics.org
[25] Ming Qiu Zhang, Min Zhi Rong, Xun Lu, *Fully biodegradable natural fiber composites from renewable resources. All-plant fiber composites*, Composites Science and Technology 65 (2005), 2514-2525
[31] www.bioplastics24.com
[34] www.metabolix.com
[39] www.sukano.com
[40] www.natureworksllc.com
[41] P. A. Gunatillake, R. Adhikari, Biodegradable synthetic polymer for tissue engineering, European Cells and Materials 5 (2003), 1-16
[51] U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W-D. Deckwer, R-J Muller, Biodegradation of Aliphatic-aromatic copolyesters- evaluation of the final
biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere 44 (2001), 289-299

[53] K. Twarowska-Schmidt, M. Ratajska, Biodegradability of non-wovens made of aliphatic-aromatic polyester, Fibres and Textiles in Eastern Europe 13, No. 1 (49), 2005

[57] http://www.devicelink.com/mddi/archive/01/01/003.html

[63] www.devicelink.com/mpb/archive/96/03/006.html

